MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Unicode version

Theorem pntlemd 21249
Description: Lemma for pnt 21269. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  A is C^*,  B is c1,  L is λ,  D is c2, and  F is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
Assertion
Ref Expression
pntlemd  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 10936 . . . 4  |-  ( 0 (,) 1 )  C_  RR
2 pntlem1.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
31, 2sseldi 3314 . . 3  |-  ( ph  ->  L  e.  RR )
4 eliooord 10934 . . . . 5  |-  ( L  e.  ( 0 (,) 1 )  ->  (
0  <  L  /\  L  <  1 ) )
52, 4syl 16 . . . 4  |-  ( ph  ->  ( 0  <  L  /\  L  <  1
) )
65simpld 446 . . 3  |-  ( ph  ->  0  <  L )
73, 6elrpd 10610 . 2  |-  ( ph  ->  L  e.  RR+ )
8 pntlem1.d . . 3  |-  D  =  ( A  +  1 )
9 pntlem1.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
10 1rp 10580 . . . 4  |-  1  e.  RR+
11 rpaddcl 10596 . . . 4  |-  ( ( A  e.  RR+  /\  1  e.  RR+ )  ->  ( A  +  1 )  e.  RR+ )
129, 10, 11sylancl 644 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  RR+ )
138, 12syl5eqel 2496 . 2  |-  ( ph  ->  D  e.  RR+ )
14 pntlem1.f . . 3  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
15 1re 9054 . . . . . . . 8  |-  1  e.  RR
16 ltaddrp 10608 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
1715, 9, 16sylancr 645 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  +  A ) )
189rpcnd 10614 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
19 ax-1cn 9012 . . . . . . . . 9  |-  1  e.  CC
20 addcom 9216 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2118, 19, 20sylancl 644 . . . . . . . 8  |-  ( ph  ->  ( A  +  1 )  =  ( 1  +  A ) )
228, 21syl5eq 2456 . . . . . . 7  |-  ( ph  ->  D  =  ( 1  +  A ) )
2317, 22breqtrrd 4206 . . . . . 6  |-  ( ph  ->  1  <  D )
2413recgt1d 10626 . . . . . 6  |-  ( ph  ->  ( 1  <  D  <->  ( 1  /  D )  <  1 ) )
2523, 24mpbid 202 . . . . 5  |-  ( ph  ->  ( 1  /  D
)  <  1 )
2613rprecred 10623 . . . . . 6  |-  ( ph  ->  ( 1  /  D
)  e.  RR )
27 difrp 10609 . . . . . 6  |-  ( ( ( 1  /  D
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2826, 15, 27sylancl 644 . . . . 5  |-  ( ph  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2925, 28mpbid 202 . . . 4  |-  ( ph  ->  ( 1  -  (
1  /  D ) )  e.  RR+ )
30 3nn0 10203 . . . . . . . . 9  |-  3  e.  NN0
31 2nn 10097 . . . . . . . . 9  |-  2  e.  NN
3230, 31decnncl 10359 . . . . . . . 8  |- ; 3 2  e.  NN
33 nnrp 10585 . . . . . . . 8  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
3432, 33ax-mp 8 . . . . . . 7  |- ; 3 2  e.  RR+
35 pntlem1.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
36 rpmulcl 10597 . . . . . . 7  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
3734, 35, 36sylancr 645 . . . . . 6  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
387, 37rpdivcld 10629 . . . . 5  |-  ( ph  ->  ( L  /  (; 3 2  x.  B ) )  e.  RR+ )
39 2z 10276 . . . . . 6  |-  2  e.  ZZ
40 rpexpcl 11363 . . . . . 6  |-  ( ( D  e.  RR+  /\  2  e.  ZZ )  ->  ( D ^ 2 )  e.  RR+ )
4113, 39, 40sylancl 644 . . . . 5  |-  ( ph  ->  ( D ^ 2 )  e.  RR+ )
4238, 41rpdivcld 10629 . . . 4  |-  ( ph  ->  ( ( L  / 
(; 3 2  x.  B
) )  /  ( D ^ 2 ) )  e.  RR+ )
4329, 42rpmulcld 10628 . . 3  |-  ( ph  ->  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )  e.  RR+ )
4414, 43syl5eqel 2496 . 2  |-  ( ph  ->  F  e.  RR+ )
457, 13, 443jca 1134 1  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4180    e. cmpt 4234   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    < clt 9084    - cmin 9255    / cdiv 9641   NNcn 9964   2c2 10013   3c3 10014   ZZcz 10246  ;cdc 10346   RR+crp 10576   (,)cioo 10880   ^cexp 11345  ψcchp 20836
This theorem is referenced by:  pntlemc  21250  pntlema  21251  pntlemb  21252  pntlemq  21256  pntlemr  21257  pntlemj  21258  pntlemf  21260  pntlemo  21262  pntleml  21266
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-rp 10577  df-ioo 10884  df-seq 11287  df-exp 11346
  Copyright terms: Public domain W3C validator