MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Unicode version

Theorem pntlemd 20670
Description: Lemma for pnt 20690. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  A is C^*,  B is c1,  L is λ,  D is c2, and  F is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
Assertion
Ref Expression
pntlemd  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 10643 . . . 4  |-  ( 0 (,) 1 )  C_  RR
2 pntlem1.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
31, 2sseldi 3120 . . 3  |-  ( ph  ->  L  e.  RR )
4 eliooord 10641 . . . . 5  |-  ( L  e.  ( 0 (,) 1 )  ->  (
0  <  L  /\  L  <  1 ) )
52, 4syl 17 . . . 4  |-  ( ph  ->  ( 0  <  L  /\  L  <  1
) )
65simpld 447 . . 3  |-  ( ph  ->  0  <  L )
73, 6elrpd 10320 . 2  |-  ( ph  ->  L  e.  RR+ )
8 pntlem1.d . . 3  |-  D  =  ( A  +  1 )
9 pntlem1.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
10 1rp 10290 . . . 4  |-  1  e.  RR+
11 rpaddcl 10306 . . . 4  |-  ( ( A  e.  RR+  /\  1  e.  RR+ )  ->  ( A  +  1 )  e.  RR+ )
129, 10, 11sylancl 646 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  RR+ )
138, 12syl5eqel 2340 . 2  |-  ( ph  ->  D  e.  RR+ )
14 pntlem1.f . . 3  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
15 1re 8770 . . . . . . . 8  |-  1  e.  RR
16 ltaddrp 10318 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
1715, 9, 16sylancr 647 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  +  A ) )
189rpcnd 10324 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
19 ax-1cn 8728 . . . . . . . . 9  |-  1  e.  CC
20 addcom 8931 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2118, 19, 20sylancl 646 . . . . . . . 8  |-  ( ph  ->  ( A  +  1 )  =  ( 1  +  A ) )
228, 21syl5eq 2300 . . . . . . 7  |-  ( ph  ->  D  =  ( 1  +  A ) )
2317, 22breqtrrd 3989 . . . . . 6  |-  ( ph  ->  1  <  D )
2413recgt1d 10336 . . . . . 6  |-  ( ph  ->  ( 1  <  D  <->  ( 1  /  D )  <  1 ) )
2523, 24mpbid 203 . . . . 5  |-  ( ph  ->  ( 1  /  D
)  <  1 )
2613rprecred 10333 . . . . . 6  |-  ( ph  ->  ( 1  /  D
)  e.  RR )
27 difrp 10319 . . . . . 6  |-  ( ( ( 1  /  D
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2826, 15, 27sylancl 646 . . . . 5  |-  ( ph  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2925, 28mpbid 203 . . . 4  |-  ( ph  ->  ( 1  -  (
1  /  D ) )  e.  RR+ )
30 3nn0 9915 . . . . . . . . 9  |-  3  e.  NN0
31 2nn 9809 . . . . . . . . 9  |-  2  e.  NN
3230, 31decnncl 10069 . . . . . . . 8  |- ; 3 2  e.  NN
33 nnrp 10295 . . . . . . . 8  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
3432, 33ax-mp 10 . . . . . . 7  |- ; 3 2  e.  RR+
35 pntlem1.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
36 rpmulcl 10307 . . . . . . 7  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
3734, 35, 36sylancr 647 . . . . . 6  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
387, 37rpdivcld 10339 . . . . 5  |-  ( ph  ->  ( L  /  (; 3 2  x.  B ) )  e.  RR+ )
39 2z 9986 . . . . . 6  |-  2  e.  ZZ
40 rpexpcl 11053 . . . . . 6  |-  ( ( D  e.  RR+  /\  2  e.  ZZ )  ->  ( D ^ 2 )  e.  RR+ )
4113, 39, 40sylancl 646 . . . . 5  |-  ( ph  ->  ( D ^ 2 )  e.  RR+ )
4238, 41rpdivcld 10339 . . . 4  |-  ( ph  ->  ( ( L  / 
(; 3 2  x.  B
) )  /  ( D ^ 2 ) )  e.  RR+ )
4329, 42rpmulcld 10338 . . 3  |-  ( ph  ->  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )  e.  RR+ )
4414, 43syl5eqel 2340 . 2  |-  ( ph  ->  F  e.  RR+ )
457, 13, 443jca 1137 1  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3963    e. cmpt 4017   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675    < clt 8800    - cmin 8970    / cdiv 9356   NNcn 9679   2c2 9728   3c3 9729   ZZcz 9956  ;cdc 10056   RR+crp 10286   (,)cioo 10587   ^cexp 11035  ψcchp 20257
This theorem is referenced by:  pntlemc  20671  pntlema  20672  pntlemb  20673  pntlemq  20677  pntlemr  20678  pntlemj  20679  pntlemf  20681  pntlemo  20683  pntleml  20687
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-rp 10287  df-ioo 10591  df-seq 10978  df-exp 11036
  Copyright terms: Public domain W3C validator