MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Unicode version

Theorem pntleml 20722
Description: Lemma for pnt 20725. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlemp.b  |-  ( ph  ->  B  e.  RR+ )
pntlemp.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlemp.d  |-  D  =  ( A  +  1 )
pntlemp.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlemp.K  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
Assertion
Ref Expression
pntleml  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Distinct variable groups:    x, y,
z, A    e, a,
k, u, x, y, z, D    y, F, z    R, e, k, u, x, y, z    e, L, k, u, x, y, z    ph, x, y    B, e, k, x, y, z    ph, z
Allowed substitution hints:    ph( u, e, k, a)    A( u, e, k, a)    B( u, a)    R( a)    F( x, u, e, k, a)    L( a)

Proof of Theorem pntleml
StepHypRef Expression
1 pntlem3.r . 2  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem3.a . 2  |-  ( ph  ->  A  e.  RR+ )
3 pntlem3.A . 2  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
4 eqid 2258 . 2  |-  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
5 pntlemp.b . . . 4  |-  ( ph  ->  B  e.  RR+ )
6 pntlemp.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
7 pntlemp.d . . . 4  |-  D  =  ( A  +  1 )
8 pntlemp.f . . . 4  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
91, 2, 5, 6, 7, 8pntlemd 20705 . . 3  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
109simp3d 974 . 2  |-  ( ph  ->  F  e.  RR+ )
11 0cn 8799 . . . . . 6  |-  0  e.  CC
1211subidi 9085 . . . . 5  |-  ( 0  -  0 )  =  0
13 simpr 449 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  =  0 )
1413oveq1d 5807 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  ( 0 ^ 3 ) )
15 3nn 9845 . . . . . . . . . 10  |-  3  e.  NN
16 0exp 11103 . . . . . . . . . 10  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
1715, 16ax-mp 10 . . . . . . . . 9  |-  ( 0 ^ 3 )  =  0
1814, 17syl6eq 2306 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  0 )
1918oveq2d 5808 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  ( F  x.  0 ) )
2010rpcnd 10359 . . . . . . . . 9  |-  ( ph  ->  F  e.  CC )
2120mul01d 8979 . . . . . . . 8  |-  ( ph  ->  ( F  x.  0 )  =  0 )
2221ad2antrr 709 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  0 )  =  0 )
2319, 22eqtrd 2290 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  0 )
2413, 23oveq12d 5810 . . . . 5  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  ( 0  -  0 ) )
2512, 24, 133eqtr4a 2316 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  r )
26 simplr 734 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
2725, 26eqeltrd 2332 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
28 oveq1 5799 . . . . . . . . . . 11  |-  ( y  =  s  ->  (
y [,)  +oo )  =  ( s [,)  +oo ) )
2928raleqdv 2717 . . . . . . . . . 10  |-  ( y  =  s  ->  ( A. z  e.  (
y [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  r  <->  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
3029cbvrexv 2740 . . . . . . . . 9  |-  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  <->  E. s  e.  RR+  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
31 simplrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  ( 0 [,] A
) )
32 0re 8806 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
332ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR+ )
3433rpred 10357 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR )
35 elicc2 10681 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( r  e.  ( 0 [,] A )  <-> 
( r  e.  RR  /\  0  <_  r  /\  r  <_  A ) ) )
3632, 34, 35sylancr 647 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  ( 0 [,] A
)  <->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) ) )
3731, 36mpbid 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) )
3837simp1d 972 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR )
3910ad2antrr 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  F  e.  RR+ )
4037simp2d 973 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  r )
41 simplrl 739 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  =/=  0 )
4238, 40, 41ne0gt0d 8924 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <  r )
4338, 42elrpd 10355 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR+ )
44 3nn0 9950 . . . . . . . . . . . . . . . . . 18  |-  3  e.  NN0
4544nn0zi 10015 . . . . . . . . . . . . . . . . 17  |-  3  e.  ZZ
46 rpexpcl 11088 . . . . . . . . . . . . . . . . 17  |-  ( ( r  e.  RR+  /\  3  e.  ZZ )  ->  (
r ^ 3 )  e.  RR+ )
4743, 45, 46sylancl 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r ^ 3 )  e.  RR+ )
4839, 47rpmulcld 10373 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR+ )
4948rpred 10357 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR )
5038, 49resubcld 9179 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  RR )
513ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  A )
525ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  B  e.  RR+ )
536ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  L  e.  ( 0 (,) 1
) )
54 pntlemp.K . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
5554ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
5637simp3d 974 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  <_  A )
57 eqid 2258 . . . . . . . . . . . . . . 15  |-  ( r  /  D )  =  ( r  /  D
)
58 eqid 2258 . . . . . . . . . . . . . . 15  |-  ( exp `  ( B  /  (
r  /  D ) ) )  =  ( exp `  ( B  /  ( r  /  D ) ) )
59 simprl 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR+ )
60 1rp 10325 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR+
61 rpaddcl 10341 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  RR+  /\  1  e.  RR+ )  ->  (
s  +  1 )  e.  RR+ )
6259, 60, 61sylancl 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( s  +  1 )  e.  RR+ )
6359rpge0d 10361 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  s )
64 1re 8805 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
6559rpred 10357 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR )
66 addge02 9253 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  s  e.  RR )  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6764, 65, 66sylancr 647 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6863, 67mpbid 203 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  1  <_  ( s  +  1 ) )
6962, 68jca 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 )  e.  RR+  /\  1  <_  ( s  +  1 ) ) )
7059rpxrd 10358 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR* )
7165lep1d 9656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  <_  ( s  +  1 ) )
72 df-ico 10628 . . . . . . . . . . . . . . . . . 18  |-  [,)  =  ( t  e.  RR* ,  r  e.  RR*  |->  { w  e.  RR*  |  ( t  <_  w  /\  w  <  r ) } )
73 xrletr 10456 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  e.  RR*  /\  (
s  +  1 )  e.  RR*  /\  v  e.  RR* )  ->  (
( s  <_  (
s  +  1 )  /\  ( s  +  1 )  <_  v
)  ->  s  <_  v ) )
7472, 72, 73ixxss1 10640 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  RR*  /\  s  <_  ( s  +  1 ) )  ->  (
( s  +  1 ) [,)  +oo )  C_  ( s [,)  +oo ) )
7570, 71, 74syl2anc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 ) [,)  +oo )  C_  (
s [,)  +oo ) )
76 simprr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
77 ssralv 3212 . . . . . . . . . . . . . . . 16  |-  ( ( ( s  +  1 ) [,)  +oo )  C_  ( s [,)  +oo )  ->  ( A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  A. z  e.  ( ( s  +  1 ) [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )
7875, 76, 77sylc 58 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( ( s  +  1 ) [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
791, 33, 51, 52, 53, 7, 8, 55, 43, 56, 57, 58, 69, 78pntlemp 20721 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
80 rpre 10327 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR+  ->  w  e.  RR )
8180adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  RR )
8281leidd 9307 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  <_  w )
83 elicopnf 10705 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR  ->  (
w  e.  ( w [,)  +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8481, 83syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
w  e.  ( w [,)  +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8581, 82, 84mpbir2and 893 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  ( w [,)  +oo ) )
86 fveq2 5458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  ( R `  v )  =  ( R `  w ) )
87 id 21 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  v  =  w )
8886, 87oveq12d 5810 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  (
( R `  v
)  /  v )  =  ( ( R `
 w )  /  w ) )
8988fveq2d 5462 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  w
)  /  w ) ) )
9089breq1d 4007 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  w  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
9190rcla4v 2855 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( w [,) 
+oo )  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( abs `  ( ( R `
 w )  /  w ) )  <_ 
( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
9285, 91syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( abs `  ( ( R `
 w )  /  w ) )  <_ 
( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
931pntrf 20674 . . . . . . . . . . . . . . . . . . . . . 22  |-  R : RR+
--> RR
9493ffvelrni 5598 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  RR+  ->  ( R `
 w )  e.  RR )
95 rerpdivcl 10348 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R `  w
)  e.  RR  /\  w  e.  RR+ )  -> 
( ( R `  w )  /  w
)  e.  RR )
9694, 95mpancom 653 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  RR+  ->  ( ( R `  w )  /  w )  e.  RR )
9796adantl 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  RR )
9897recnd 8829 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  CC )
9998absge0d 11891 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  <_  ( abs `  (
( R `  w
)  /  w ) ) )
10032a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  e.  RR )
10198abscld 11883 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( abs `  ( ( R `
 w )  /  w ) )  e.  RR )
10250adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )
103 letr 8882 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  ( abs `  ( ( R `  w )  /  w ) )  e.  RR  /\  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )  -> 
( ( 0  <_ 
( abs `  (
( R `  w
)  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) )  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) ) )
104100, 101, 102, 103syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( 0  <_  ( abs `  ( ( R `
 w )  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10599, 104mpand 659 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10692, 105syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
107106rexlimdva 2642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10879, 107mpd 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) )
10948rpge0d 10361 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( F  x.  ( r ^ 3 ) ) )
11038, 49subge02d 9332 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  ( F  x.  ( r ^ 3 ) )  <->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r ) )
111109, 110mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r )
11250, 38, 34, 111, 56letrd 8941 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
113 elicc2 10681 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  <-> 
( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
) )
11432, 34, 113sylancr 647 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  <->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A ) ) )
11550, 108, 112, 114mpbir3and 1140 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A
) )
116115, 79jca 520 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
117116expr 601 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  s  e.  RR+ )  ->  ( A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
118117rexlimdva 2642 . . . . . . . . 9  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. s  e.  RR+  A. z  e.  ( s [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
11930, 118syl5bi 210 . . . . . . . 8  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
120119anassrs 632 . . . . . . 7  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  ( 0 [,] A
) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
121120expimpd 589 . . . . . 6  |-  ( (
ph  /\  r  =/=  0 )  ->  (
( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
122 breq2 4001 . . . . . . . 8  |-  ( t  =  r  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )
123122rexralbidv 2562 . . . . . . 7  |-  ( t  =  r  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
124123elrab 2898 . . . . . 6  |-  ( r  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
125 breq2 4001 . . . . . . . . 9  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
126125rexralbidv 2562 . . . . . . . 8  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
127 fveq2 5458 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  ( R `  v )  =  ( R `  z ) )
128 id 21 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  v  =  z )
129127, 128oveq12d 5810 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  (
( R `  v
)  /  v )  =  ( ( R `
 z )  / 
z ) )
130129fveq2d 5462 . . . . . . . . . . . 12  |-  ( v  =  z  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  z
)  /  z ) ) )
131130breq1d 4007 . . . . . . . . . . 11  |-  ( v  =  z  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
132131cbvralv 2739 . . . . . . . . . 10  |-  ( A. v  e.  ( w [,)  +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) )  <->  A. z  e.  (
w [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) ) )
133 oveq1 5799 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
w [,)  +oo )  =  ( y [,)  +oo ) )
134133raleqdv 2717 . . . . . . . . . 10  |-  ( w  =  y  ->  ( A. z  e.  (
w [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  <->  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
135132, 134syl5bb 250 . . . . . . . . 9  |-  ( w  =  y  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  <->  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
136135cbvrexv 2740 . . . . . . . 8  |-  ( E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
137126, 136syl6bbr 256 . . . . . . 7  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
138137elrab 2898 . . . . . 6  |-  ( ( r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
139121, 124, 1383imtr4g 263 . . . . 5  |-  ( (
ph  /\  r  =/=  0 )  ->  (
r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
) )
140139imp 420 . . . 4  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e. 
{ t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
141140an32s 782 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  =/=  0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
14227, 141pm2.61dane 2499 . 2  |-  ( (
ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t } )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
1431, 2, 3, 4, 10, 142pntlem3 20720 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   {crab 2522    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710    +oocpnf 8832   RR*cxr 8834    < clt 8835    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   3c3 9764   ZZcz 9991  ;cdc 10091   RR+crp 10321   (,)cioo 10622   [,)cico 10624   [,]cicc 10625   ^cexp 11070   abscabs 11684    ~~> r crli 11924   expce 12305  ψcchp 20292
This theorem is referenced by:  pnt3  20723
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-o1 11929  df-lo1 11930  df-sum 12124  df-ef 12311  df-e 12312  df-sin 12313  df-cos 12314  df-pi 12316  df-divides 12494  df-gcd 12648  df-prime 12721  df-pc 12852  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-submnd 14378  df-mulg 14454  df-cntz 14755  df-cmn 15053  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-cmp 17076  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-limc 19178  df-dv 19179  df-log 19876  df-cxp 19877  df-em 20249  df-cht 20296  df-vma 20297  df-chp 20298  df-ppi 20299  df-mu 20300
  Copyright terms: Public domain W3C validator