MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Unicode version

Theorem pntleml 20754
Description: Lemma for pnt 20757. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlemp.b  |-  ( ph  ->  B  e.  RR+ )
pntlemp.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlemp.d  |-  D  =  ( A  +  1 )
pntlemp.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlemp.K  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
Assertion
Ref Expression
pntleml  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Distinct variable groups:    x, y,
z, A    e, a,
k, u, x, y, z, D    y, F, z    R, e, k, u, x, y, z    e, L, k, u, x, y, z    ph, x, y    B, e, k, x, y, z    ph, z
Dummy variables  s 
r  t  v  w are mutually distinct and distinct from all other variables.
Allowed substitution hints:    ph( u, e, k, a)    A( u, e, k, a)    B( u, a)    R( a)    F( x, u, e, k, a)    L( a)

Proof of Theorem pntleml
StepHypRef Expression
1 pntlem3.r . 2  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem3.a . 2  |-  ( ph  ->  A  e.  RR+ )
3 pntlem3.A . 2  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
4 eqid 2284 . 2  |-  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
5 pntlemp.b . . . 4  |-  ( ph  ->  B  e.  RR+ )
6 pntlemp.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
7 pntlemp.d . . . 4  |-  D  =  ( A  +  1 )
8 pntlemp.f . . . 4  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
91, 2, 5, 6, 7, 8pntlemd 20737 . . 3  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
109simp3d 971 . 2  |-  ( ph  ->  F  e.  RR+ )
11 0cn 8826 . . . . . 6  |-  0  e.  CC
1211subidi 9112 . . . . 5  |-  ( 0  -  0 )  =  0
13 simpr 449 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  =  0 )
1413oveq1d 5834 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  ( 0 ^ 3 ) )
15 3nn 9873 . . . . . . . . . 10  |-  3  e.  NN
16 0exp 11131 . . . . . . . . . 10  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
1715, 16ax-mp 10 . . . . . . . . 9  |-  ( 0 ^ 3 )  =  0
1814, 17syl6eq 2332 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r ^ 3 )  =  0 )
1918oveq2d 5835 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  ( F  x.  0 ) )
2010rpcnd 10387 . . . . . . . . 9  |-  ( ph  ->  F  e.  CC )
2120mul01d 9006 . . . . . . . 8  |-  ( ph  ->  ( F  x.  0 )  =  0 )
2221ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  0 )  =  0 )
2319, 22eqtrd 2316 . . . . . 6  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  ( F  x.  ( r ^ 3 ) )  =  0 )
2413, 23oveq12d 5837 . . . . 5  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  ( 0  -  0 ) )
2512, 24, 133eqtr4a 2342 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  =  r )
26 simplr 733 . . . 4  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
2725, 26eqeltrd 2358 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  = 
0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
28 oveq1 5826 . . . . . . . . . . 11  |-  ( y  =  s  ->  (
y [,)  +oo )  =  ( s [,)  +oo ) )
2928raleqdv 2743 . . . . . . . . . 10  |-  ( y  =  s  ->  ( A. z  e.  (
y [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  r  <->  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
3029cbvrexv 2766 . . . . . . . . 9  |-  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  <->  E. s  e.  RR+  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
31 simplrr 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  ( 0 [,] A
) )
32 0re 8833 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
332ad2antrr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR+ )
3433rpred 10385 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A  e.  RR )
35 elicc2 10709 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( r  e.  ( 0 [,] A )  <-> 
( r  e.  RR  /\  0  <_  r  /\  r  <_  A ) ) )
3632, 34, 35sylancr 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  ( 0 [,] A
)  <->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) ) )
3731, 36mpbid 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  e.  RR  /\  0  <_ 
r  /\  r  <_  A ) )
3837simp1d 969 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR )
3910ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  F  e.  RR+ )
4037simp2d 970 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  r )
41 simplrl 738 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  =/=  0 )
4238, 40, 41ne0gt0d 8951 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <  r )
4338, 42elrpd 10383 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  e.  RR+ )
44 3nn0 9978 . . . . . . . . . . . . . . . . . 18  |-  3  e.  NN0
4544nn0zi 10043 . . . . . . . . . . . . . . . . 17  |-  3  e.  ZZ
46 rpexpcl 11116 . . . . . . . . . . . . . . . . 17  |-  ( ( r  e.  RR+  /\  3  e.  ZZ )  ->  (
r ^ 3 )  e.  RR+ )
4743, 45, 46sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r ^ 3 )  e.  RR+ )
4839, 47rpmulcld 10401 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR+ )
4948rpred 10385 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( F  x.  ( r ^ 3 ) )  e.  RR )
5038, 49resubcld 9206 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  RR )
513ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  A )
525ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  B  e.  RR+ )
536ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  L  e.  ( 0 (,) 1
) )
54 pntlemp.K . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
5554ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
5637simp3d 971 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  r  <_  A )
57 eqid 2284 . . . . . . . . . . . . . . 15  |-  ( r  /  D )  =  ( r  /  D
)
58 eqid 2284 . . . . . . . . . . . . . . 15  |-  ( exp `  ( B  /  (
r  /  D ) ) )  =  ( exp `  ( B  /  ( r  /  D ) ) )
59 simprl 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR+ )
60 1rp 10353 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR+
61 rpaddcl 10369 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  RR+  /\  1  e.  RR+ )  ->  (
s  +  1 )  e.  RR+ )
6259, 60, 61sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( s  +  1 )  e.  RR+ )
6359rpge0d 10389 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  s )
64 1re 8832 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
6559rpred 10385 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR )
66 addge02 9280 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  s  e.  RR )  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6764, 65, 66sylancr 646 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  s  <->  1  <_  ( s  +  1 ) ) )
6863, 67mpbid 203 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  1  <_  ( s  +  1 ) )
6962, 68jca 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 )  e.  RR+  /\  1  <_  ( s  +  1 ) ) )
7059rpxrd 10386 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  e.  RR* )
7165lep1d 9683 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  s  <_  ( s  +  1 ) )
72 df-ico 10656 . . . . . . . . . . . . . . . . . 18  |-  [,)  =  ( t  e.  RR* ,  r  e.  RR*  |->  { w  e.  RR*  |  ( t  <_  w  /\  w  <  r ) } )
73 xrletr 10484 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  e.  RR*  /\  (
s  +  1 )  e.  RR*  /\  v  e.  RR* )  ->  (
( s  <_  (
s  +  1 )  /\  ( s  +  1 )  <_  v
)  ->  s  <_  v ) )
7472, 72, 73ixxss1 10668 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  RR*  /\  s  <_  ( s  +  1 ) )  ->  (
( s  +  1 ) [,)  +oo )  C_  ( s [,)  +oo ) )
7570, 71, 74syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
s  +  1 ) [,)  +oo )  C_  (
s [,)  +oo ) )
76 simprr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
77 ssralv 3238 . . . . . . . . . . . . . . . 16  |-  ( ( ( s  +  1 ) [,)  +oo )  C_  ( s [,)  +oo )  ->  ( A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  A. z  e.  ( ( s  +  1 ) [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )
7875, 76, 77sylc 58 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  A. z  e.  ( ( s  +  1 ) [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
791, 33, 51, 52, 53, 7, 8, 55, 43, 56, 57, 58, 69, 78pntlemp 20753 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
80 rpre 10355 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR+  ->  w  e.  RR )
8180adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  RR )
8281leidd 9334 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  <_  w )
83 elicopnf 10733 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR  ->  (
w  e.  ( w [,)  +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8481, 83syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
w  e.  ( w [,)  +oo )  <->  ( w  e.  RR  /\  w  <_  w ) ) )
8581, 82, 84mpbir2and 890 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  w  e.  ( w [,)  +oo ) )
86 fveq2 5485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  ( R `  v )  =  ( R `  w ) )
87 id 21 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  v  =  w )
8886, 87oveq12d 5837 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  (
( R `  v
)  /  v )  =  ( ( R `
 w )  /  w ) )
8988fveq2d 5489 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  w
)  /  w ) ) )
9089breq1d 4034 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  w  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
9190rspcv 2881 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( w [,) 
+oo )  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( abs `  ( ( R `
 w )  /  w ) )  <_ 
( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
9285, 91syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( abs `  ( ( R `
 w )  /  w ) )  <_ 
( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
931pntrf 20706 . . . . . . . . . . . . . . . . . . . . . 22  |-  R : RR+
--> RR
9493ffvelrni 5625 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  RR+  ->  ( R `
 w )  e.  RR )
95 rerpdivcl 10376 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R `  w
)  e.  RR  /\  w  e.  RR+ )  -> 
( ( R `  w )  /  w
)  e.  RR )
9694, 95mpancom 652 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  RR+  ->  ( ( R `  w )  /  w )  e.  RR )
9796adantl 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  RR )
9897recnd 8856 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( R `  w
)  /  w )  e.  CC )
9998absge0d 11920 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  <_  ( abs `  (
( R `  w
)  /  w ) ) )
10032a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  0  e.  RR )
10198abscld 11912 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( abs `  ( ( R `
 w )  /  w ) )  e.  RR )
10250adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )
103 letr 8909 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  ( abs `  ( ( R `  w )  /  w ) )  e.  RR  /\  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR )  -> 
( ( 0  <_ 
( abs `  (
( R `  w
)  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) )  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) ) )
104100, 101, 102, 103syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( 0  <_  ( abs `  ( ( R `
 w )  /  w ) )  /\  ( abs `  ( ( R `  w )  /  w ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10599, 104mpand 658 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  (
( abs `  (
( R `  w
)  /  w ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10692, 105syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( r  =/=  0  /\  r  e.  (
0 [,] A ) ) )  /\  (
s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )  /\  w  e.  RR+ )  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
107106rexlimdva 2668 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  -> 
0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
10879, 107mpd 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( r  -  ( F  x.  ( r ^
3 ) ) ) )
10948rpge0d 10389 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  0  <_  ( F  x.  ( r ^ 3 ) ) )
11038, 49subge02d 9359 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( 0  <_  ( F  x.  ( r ^ 3 ) )  <->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r ) )
111109, 110mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_ 
r )
11250, 38, 34, 111, 56letrd 8968 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
113 elicc2 10709 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  <-> 
( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A )
) )
11432, 34, 113sylancr 646 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  <->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  RR  /\  0  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  /\  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <_  A ) ) )
11550, 108, 112, 114mpbir3and 1137 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A
) )
116115, 79jca 520 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  ( s  e.  RR+  /\  A. z  e.  ( s [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)  ->  ( (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
117116expr 600 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
r  =/=  0  /\  r  e.  ( 0 [,] A ) ) )  /\  s  e.  RR+ )  ->  ( A. z  e.  ( s [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  r  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
118117rexlimdva 2668 . . . . . . . . 9  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. s  e.  RR+  A. z  e.  ( s [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
11930, 118syl5bi 210 . . . . . . . 8  |-  ( (
ph  /\  ( r  =/=  0  /\  r  e.  ( 0 [,] A
) ) )  -> 
( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
120119anassrs 631 . . . . . . 7  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  ( 0 [,] A
) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r  ->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
121120expimpd 588 . . . . . 6  |-  ( (
ph  /\  r  =/=  0 )  ->  (
( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  r )  ->  ( ( r  -  ( F  x.  (
r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) ) )
122 breq2 4028 . . . . . . . 8  |-  ( t  =  r  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  r
) )
123122rexralbidv 2588 . . . . . . 7  |-  ( t  =  r  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
124123elrab 2924 . . . . . 6  |-  ( r  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( r  e.  ( 0 [,] A )  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  r )
)
125 breq2 4028 . . . . . . . . 9  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
126125rexralbidv 2588 . . . . . . . 8  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
127 fveq2 5485 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  ( R `  v )  =  ( R `  z ) )
128 id 21 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  v  =  z )
129127, 128oveq12d 5837 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  (
( R `  v
)  /  v )  =  ( ( R `
 z )  / 
z ) )
130129fveq2d 5489 . . . . . . . . . . . 12  |-  ( v  =  z  ->  ( abs `  ( ( R `
 v )  / 
v ) )  =  ( abs `  (
( R `  z
)  /  z ) ) )
131130breq1d 4034 . . . . . . . . . . 11  |-  ( v  =  z  ->  (
( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) ) ) )
132131cbvralv 2765 . . . . . . . . . 10  |-  ( A. v  e.  ( w [,)  +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  (
r  -  ( F  x.  ( r ^
3 ) ) )  <->  A. z  e.  (
w [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) ) )
133 oveq1 5826 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
w [,)  +oo )  =  ( y [,)  +oo ) )
134133raleqdv 2743 . . . . . . . . . 10  |-  ( w  =  y  ->  ( A. z  e.  (
w [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  <->  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
135132, 134syl5bb 250 . . . . . . . . 9  |-  ( w  =  y  ->  ( A. v  e.  (
w [,)  +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( r  -  ( F  x.  (
r ^ 3 ) ) )  <->  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
136135cbvrexv 2766 . . . . . . . 8  |-  ( E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) )  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) )
137126, 136syl6bbr 256 . . . . . . 7  |-  ( t  =  ( r  -  ( F  x.  (
r ^ 3 ) ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
138137elrab 2924 . . . . . 6  |-  ( ( r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  <->  ( ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  ( 0 [,] A )  /\  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( r  -  ( F  x.  ( r ^ 3 ) ) ) ) )
139121, 124, 1383imtr4g 263 . . . . 5  |-  ( (
ph  /\  r  =/=  0 )  ->  (
r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
) )
140139imp 420 . . . 4  |-  ( ( ( ph  /\  r  =/=  0 )  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  ->  ( r  -  ( F  x.  ( r ^ 3 ) ) )  e. 
{ t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
141140an32s 781 . . 3  |-  ( ( ( ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
)  /\  r  =/=  0 )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
14227, 141pm2.61dane 2525 . 2  |-  ( (
ph  /\  r  e.  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t } )  ->  (
r  -  ( F  x.  ( r ^
3 ) ) )  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
)
1431, 2, 3, 4, 10, 142pntlem3 20752 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   {crab 2548    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   ` cfv 5221  (class class class)co 5819   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   3c3 9791   ZZcz 10019  ;cdc 10119   RR+crp 10349   (,)cioo 10650   [,)cico 10652   [,]cicc 10653   ^cexp 11098   abscabs 11713    ~~> r crli 11953   expce 12337  ψcchp 20324
This theorem is referenced by:  pnt3  20755
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-o1 11958  df-lo1 11959  df-sum 12153  df-ef 12343  df-e 12344  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-prm 12753  df-pc 12884  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-cxp 19909  df-em 20281  df-cht 20328  df-vma 20329  df-chp 20330  df-ppi 20331  df-mu 20332
  Copyright terms: Public domain W3C validator