MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Unicode version

Theorem pntrlog2bnd 20696
Description: A bound on  R ( x ) log ^
2 ( x ). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrlog2bnd  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
c )
Distinct variable groups:    x, n, c, R    a, c, n, x, A
Allowed substitution hint:    R( a)

Proof of Theorem pntrlog2bnd
StepHypRef Expression
1 ioossre 10679 . . 3  |-  ( 1 (,)  +oo )  C_  RR
21a1i 12 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1 (,)  +oo )  C_  RR )
3 1re 8805 . . 3  |-  1  e.  RR
43a1i 12 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  e.  RR )
52sselda 3155 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  x  e.  RR )
6 1rp 10326 . . . . . . . . . 10  |-  1  e.  RR+
76a1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  1  e.  RR+ )
83a1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  1  e.  RR )
9 eliooord 10677 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
109adantl 454 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( 1  < 
x  /\  x  <  +oo ) )
1110simpld 447 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  1  <  x
)
128, 5, 11ltled 8935 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  1  <_  x
)
135, 7, 12rpgecld 10393 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  x  e.  RR+ )
14 pntpbnd.r . . . . . . . . . 10  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1514pntrf 20675 . . . . . . . . 9  |-  R : RR+
--> RR
1615ffvelrni 5598 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1713, 16syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( R `  x )  e.  RR )
1817recnd 8829 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( R `  x )  e.  CC )
1918abscld 11884 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( abs `  ( R `  x )
)  e.  RR )
2013relogcld 19937 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( log `  x
)  e.  RR )
2119, 20remulcld 8831 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  e.  RR )
22 2re 9783 . . . . . . 7  |-  2  e.  RR
2322a1i 12 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  2  e.  RR )
245, 11rplogcld 19943 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( log `  x
)  e.  RR+ )
2523, 24rerpdivcld 10385 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( 2  / 
( log `  x
) )  e.  RR )
26 fzfid 11002 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( 1 ... ( |_ `  (
x  /  A ) ) )  e.  Fin )
2713adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  x  e.  RR+ )
28 elfznn 10786 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) )  ->  n  e.  NN )
2928adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
3029nnrpd 10357 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR+ )
3127, 30rpdivcld 10375 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( x  /  n )  e.  RR+ )
3215ffvelrni 5598 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3331, 32syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3433recnd 8829 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3534abscld 11884 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
3630relogcld 19937 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( log `  n )  e.  RR )
3735, 36remulcld 8831 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3826, 37fsumrecl 12173 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3925, 38remulcld 8831 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
4021, 39resubcld 9179 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
4140, 13rerpdivcld 10385 . 2  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  (
1 (,)  +oo ) )  ->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
4214pntrmax 20676 . . 3  |-  E. c  e.  RR+  A. y  e.  RR+  ( abs `  (
( R `  y
)  /  y ) )  <_  c
43 eqid 2258 . . . . . 6  |-  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
)  x.  ( ( log `  i )  +  (ψ `  (
a  /  i ) ) ) ) )  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_
`  a ) ) ( (Λ `  i
)  x.  ( ( log `  i )  +  (ψ `  (
a  /  i ) ) ) ) )
44 eqid 2258 . . . . . 6  |-  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
45 simprl 735 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  c  e.  RR+ )
46 simprr 736 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c )
47 simpll 733 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  A  e.  RR )
48 simplr 734 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  1  <_  A
)
4943, 14, 44, 45, 46, 47, 48pntrlog2bndlem6 20695 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( c  e.  RR+  /\ 
A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c ) )  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_ O ( 1 ) )
5049expr 601 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  c  e.  RR+ )  ->  ( A. y  e.  RR+  ( abs `  (
( R `  y
)  /  y ) )  <_  c  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_ O ( 1 ) ) )
5150rexlimdva 2642 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( E. c  e.  RR+  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  c  ->  (
x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_ O ( 1 ) ) )
5242, 51mpi 18 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_ O ( 1 ) )
53 simprl 735 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  y  e.  RR )
54 chpcl 20325 . . . . 5  |-  ( y  e.  RR  ->  (ψ `  y )  e.  RR )
5553, 54syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  (ψ `  y
)  e.  RR )
5655, 53readdcld 8830 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( (ψ `  y )  +  y )  e.  RR )
576a1i 12 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  e.  RR+ )
58 simprr 736 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  <_  y )
5953, 57, 58rpgecld 10393 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  y  e.  RR+ )
6059relogcld 19937 . . 3  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( log `  y )  e.  RR )
6156, 60remulcld 8831 . 2  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  RR )
6241adantr 453 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
6355ad2ant2r 730 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  RR )
64 simprll 741 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
6563, 64readdcld 8830 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  y )  +  y )  e.  RR )
6659ad2ant2r 730 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR+ )
6766relogcld 19937 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  RR )
6865, 67remulcld 8831 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  RR )
6913adantr 453 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
7068, 69rerpdivcld 10385 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  e.  RR )
7117adantr 453 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  e.  RR )
7271recnd 8829 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  e.  CC )
7372abscld 11884 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  e.  RR )
7469relogcld 19937 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR )
7573, 74remulcld 8831 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  e.  RR )
7625adantr 453 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  /  ( log `  x
) )  e.  RR )
7738adantr 453 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
7876, 77remulcld 8831 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
7975, 78resubcld 9179 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
8022a1i 12 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
815adantr 453 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
8211adantr 453 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <  x )
8381, 82rplogcld 19943 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR+ )
84 2rp 10327 . . . . . . . . . 10  |-  2  e.  RR+
8584a1i 12 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR+ )
8685rpge0d 10362 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  2 )
8780, 83, 86divge0d 10394 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( 2  /  ( log `  x ) ) )
88 fzfid 11002 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
8937adantlr 698 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
9034adantlr 698 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
9190abscld 11884 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
9230adantlr 698 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR+ )
9392relogcld 19937 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( log `  n )  e.  RR )
9490absge0d 11892 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
9592rpred 10358 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  RR )
9628adantl 454 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
9796nnge1d 9756 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  1  <_  n )
9895, 97logge0d 19944 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( log `  n ) )
9991, 93, 94, 98mulge0d 9317 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  0  <_  ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
10088, 89, 99fsumge0 12219 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  sum_
n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
10176, 77, 87, 100mulge0d 9317 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
10275, 78subge02d 9332 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 0  <_  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  <->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( abs `  ( R `  x
) )  x.  ( log `  x ) ) ) )
103101, 102mpbid 203 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( abs `  ( R `  x
) )  x.  ( log `  x ) ) )
10472absge0d 11892 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( abs `  ( R `
 x ) ) )
10583rpge0d 10362 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  x ) )
106 chpcl 20325 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
10781, 106syl 17 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  e.  RR )
108107, 81readdcld 8830 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  +  x
)  e.  RR )
10914pntrval 20674 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
11069, 109syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x ) )
111110fveq2d 5462 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  =  ( abs `  ( (ψ `  x )  -  x
) ) )
112107recnd 8829 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  e.  CC )
11381recnd 8829 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  CC )
114112, 113abs2dif2d 11906 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( (ψ `  x
)  -  x ) )  <_  ( ( abs `  (ψ `  x
) )  +  ( abs `  x ) ) )
115 chpge0 20327 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
11681, 115syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  x ) )
117107, 116absidd 11871 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  (ψ `  x )
)  =  (ψ `  x ) )
11869rpge0d 10362 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  x )
11981, 118absidd 11871 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  x )  =  x )
120117, 119oveq12d 5810 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  (ψ `  x
) )  +  ( abs `  x ) )  =  ( (ψ `  x )  +  x
) )
121114, 120breqtrd 4021 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( (ψ `  x
)  -  x ) )  <_  ( (ψ `  x )  +  x
) )
122111, 121eqbrtrd 4017 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  <_  (
(ψ `  x )  +  x ) )
123 simprr 736 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
12481, 64, 123ltled 8935 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
125 chpwordi 20358 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  (ψ `  x )  <_  (ψ `  y ) )
12681, 64, 124, 125syl3anc 1187 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  <_  (ψ `  y
) )
127107, 81, 63, 64, 126, 124le2addd 9358 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  +  x
)  <_  ( (ψ `  y )  +  y ) )
12873, 108, 65, 122, 127letrd 8941 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( R `  x
) )  <_  (
(ψ `  y )  +  y ) )
12969, 66logled 19941 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( x  <_  y  <->  ( log `  x
)  <_  ( log `  y ) ) )
130124, 129mpbid 203 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  <_  ( log `  y ) )
13173, 65, 74, 67, 104, 105, 128, 130lemul12ad 9667 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( R `  x ) )  x.  ( log `  x
) )  <_  (
( (ψ `  y
)  +  y )  x.  ( log `  y
) ) )
13279, 75, 68, 103, 131letrd 8941 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  <_  ( ( (ψ `  y )  +  y )  x.  ( log `  y ) ) )
13379, 68, 69, 132lediv1dd 10412 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
( ( ( (ψ `  y )  +  y )  x.  ( log `  y ) )  /  x ) )
1346a1i 12 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  e.  RR+ )
135 chpge0 20327 . . . . . . . 8  |-  ( y  e.  RR  ->  0  <_  (ψ `  y )
)
13664, 135syl 17 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  y ) )
13766rpge0d 10362 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  y )
13863, 64, 136, 137addge0d 9316 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( (ψ `  y )  +  y ) )
139 simprlr 742 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  y )
14064, 139logge0d 19944 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  y ) )
14165, 67, 138, 140mulge0d 9317 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( (ψ `  y
)  +  y )  x.  ( log `  y
) ) )
14212adantr 453 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  x )
143134, 69, 68, 141, 142lediv2ad 10380 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  <_  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  1
) )
14463recnd 8829 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  CC )
14564recnd 8829 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  CC )
146144, 145addcld 8822 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  y )  +  y )  e.  CC )
14767recnd 8829 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  CC )
148146, 147mulcld 8823 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) )  e.  CC )
149148div1d 9496 . . . 4  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  1
)  =  ( ( (ψ `  y )  +  y )  x.  ( log `  y
) ) )
150143, 149breqtrd 4021 . . 3  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  +  y )  x.  ( log `  y
) )  /  x
)  <_  ( (
(ψ `  y )  +  y )  x.  ( log `  y
) ) )
15162, 70, 68, 133, 150letrd 8941 . 2  |-  ( ( ( ( A  e.  RR  /\  1  <_  A )  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
( ( (ψ `  y )  +  y )  x.  ( log `  y ) ) )
1522, 4, 41, 52, 61, 151lo1bddrp 11965 1  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  <_ 
c )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519    C_ wss 3127   ifcif 3539   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710    +oocpnf 8832    < clt 8835    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   RR+crp 10322   (,)cioo 10623   ...cfz 10749   |_cfl 10891   abscabs 11685   <_ O ( 1 )clo1 11927   sum_csu 12124   logclog 19875  Λcvma 20292  ψcchp 20293
This theorem is referenced by:  pntlemp  20722
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ioc 10628  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-mod 10941  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-o1 11930  df-lo1 11931  df-sum 12125  df-ef 12312  df-e 12313  df-sin 12314  df-cos 12315  df-pi 12317  df-divides 12495  df-gcd 12649  df-prime 12722  df-pc 12853  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-lp 16831  df-perf 16832  df-cn 16920  df-cnp 16921  df-haus 17006  df-cmp 17077  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cncf 18345  df-limc 19179  df-dv 19180  df-log 19877  df-cxp 19878  df-em 20250  df-cht 20297  df-vma 20298  df-chp 20299  df-ppi 20300  df-mu 20301
  Copyright terms: Public domain W3C validator