MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd Unicode version

Theorem pntrsumbnd 20715
Description: A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrsumbnd  |-  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Distinct variable groups:    m, a, n    m, c, n, R
Allowed substitution hint:    R( a)

Proof of Theorem pntrsumbnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssid 3197 . . . . 5  |-  RR  C_  RR
21a1i 10 . . . 4  |-  (  T. 
->  RR  C_  RR )
3 1re 8837 . . . . 5  |-  1  e.  RR
43a1i 10 . . . 4  |-  (  T. 
->  1  e.  RR )
5 fzfid 11035 . . . . 5  |-  ( (  T.  /\  m  e.  RR )  ->  (
1 ... ( |_ `  m ) )  e. 
Fin )
6 elfznn 10819 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  m
) )  ->  n  e.  NN )
76adantl 452 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  n  e.  NN )
8 nnrp 10363 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  RR+ )
9 pntrval.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
109pntrf 20712 . . . . . . . . . 10  |-  R : RR+
--> RR
1110ffvelrni 5664 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( R `
 n )  e.  RR )
128, 11syl 15 . . . . . . . 8  |-  ( n  e.  NN  ->  ( R `  n )  e.  RR )
13 peano2nn 9758 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
14 nnmulcl 9769 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  ( n  +  1
)  e.  NN )  ->  ( n  x.  ( n  +  1 ) )  e.  NN )
1513, 14mpdan 649 . . . . . . . 8  |-  ( n  e.  NN  ->  (
n  x.  ( n  +  1 ) )  e.  NN )
1612, 15nndivred 9794 . . . . . . 7  |-  ( n  e.  NN  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
1716recnd 8861 . . . . . 6  |-  ( n  e.  NN  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  CC )
187, 17syl 15 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  CC )
195, 18fsumcl 12206 . . . 4  |-  ( (  T.  /\  m  e.  RR )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
209pntrsumo1 20714 . . . . 5  |-  ( m  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  O
( 1 )
2120a1i 10 . . . 4  |-  (  T. 
->  ( m  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  O ( 1 ) )
22 fzfid 11035 . . . . 5  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
23 elfznn 10819 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2423adantl 452 . . . . . . 7  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  n  e.  NN )
2524, 17syl 15 . . . . . 6  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  CC )
2625abscld 11918 . . . . 5  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( abs `  ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  RR )
2722, 26fsumrecl 12207 . . . 4  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
2819adantr 451 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
2928abscld 11918 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
30 fzfid 11035 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  m ) )  e. 
Fin )
3118adantlr 695 . . . . . . 7  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
3231abscld 11918 . . . . . 6  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  m ) ) )  ->  ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3330, 32fsumrecl 12207 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3427ad2ant2r 727 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
3530, 31fsumabs 12259 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
36 fzfid 11035 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
3723adantl 452 . . . . . . . 8  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
3837, 17syl 15 . . . . . . 7  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  e.  CC )
3938abscld 11918 . . . . . 6  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  e.  RR )
4038absge0d 11926 . . . . . 6  |-  ( ( ( (  T.  /\  m  e.  RR )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
41 simplr 731 . . . . . . . 8  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  e.  RR )
42 simprll 738 . . . . . . . 8  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  x  e.  RR )
43 simprr 733 . . . . . . . . 9  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  <  x )
4441, 42, 43ltled 8967 . . . . . . . 8  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  m  <_  x )
45 flword2 10943 . . . . . . . 8  |-  ( ( m  e.  RR  /\  x  e.  RR  /\  m  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  m ) ) )
4641, 42, 44, 45syl3anc 1182 . . . . . . 7  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  ( |_ `  m ) ) )
47 fzss2 10831 . . . . . . 7  |-  ( ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  m ) )  ->  ( 1 ... ( |_ `  m
) )  C_  (
1 ... ( |_ `  x ) ) )
4846, 47syl 15 . . . . . 6  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( 1 ... ( |_ `  m ) )  C_  ( 1 ... ( |_ `  x ) ) )
4936, 39, 40, 48fsumless 12254 . . . . 5  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
5029, 33, 34, 35, 49letrd 8973 . . . 4  |-  ( ( (  T.  /\  m  e.  RR )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  m  <  x ) )  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
512, 4, 19, 21, 27, 50o1bddrp 12016 . . 3  |-  (  T. 
->  E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)
5251trud 1314 . 2  |-  E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
53 zre 10028 . . . . . 6  |-  ( m  e.  ZZ  ->  m  e.  RR )
5453imim1i 54 . . . . 5  |-  ( ( m  e.  RR  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)  ->  ( m  e.  ZZ  ->  ( abs ` 
sum_ n  e.  (
1 ... ( |_ `  m ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
55 flid 10939 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  ( |_ `  m )  =  m )
5655oveq2d 5874 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
1 ... ( |_ `  m ) )  =  ( 1 ... m
) )
5756sumeq1d 12174 . . . . . . 7  |-  ( m  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  =  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )
5857fveq2d 5529 . . . . . 6  |-  ( m  e.  ZZ  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
5958breq1d 4033 . . . . 5  |-  ( m  e.  ZZ  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  <->  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
6054, 59mpbidi 207 . . . 4  |-  ( ( m  e.  RR  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c
)  ->  ( m  e.  ZZ  ->  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  c )
)
6160ralimi2 2615 . . 3  |-  ( A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  m ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
c )
6261reximi 2650 . 2  |-  ( E. c  e.  RR+  A. m  e.  RR  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  m
) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  ->  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
6352, 62ax-mp 8 1  |-  E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    T. wtru 1307    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   ...cfz 10782   |_cfl 10924   abscabs 11719   O ( 1 )co1 11960   sum_csu 12158  ψcchp 20330
This theorem is referenced by:  pntrsumbnd2  20716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-o1 11964  df-lo1 11965  df-sum 12159  df-ef 12349  df-e 12350  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915  df-em 20287  df-cht 20334  df-vma 20335  df-chp 20336  df-ppi 20337
  Copyright terms: Public domain W3C validator