MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd2 Unicode version

Theorem pntrsumbnd2 20643
Description: A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrsumbnd2  |-  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Distinct variable groups:    k, a, m, n    k, c, m, n, R
Allowed substitution hint:    R( a)

Proof of Theorem pntrsumbnd2
StepHypRef Expression
1 pntrval.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrsumbnd 20642 . 2  |-  E. b  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b
3 2rp 10291 . . . . . 6  |-  2  e.  RR+
4 rpmulcl 10307 . . . . . 6  |-  ( ( 2  e.  RR+  /\  b  e.  RR+ )  ->  (
2  x.  b )  e.  RR+ )
53, 4mpan 654 . . . . 5  |-  ( b  e.  RR+  ->  ( 2  x.  b )  e.  RR+ )
65adantr 453 . . . 4  |-  ( ( b  e.  RR+  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)  ->  ( 2  x.  b )  e.  RR+ )
7 nnz 9977 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  ZZ )
87adantl 454 . . . . . . . 8  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  k  e.  ZZ )
9 peano2zm 9994 . . . . . . . 8  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
108, 9syl 17 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  (
k  -  1 )  e.  ZZ )
11 simplr 734 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )
12 oveq2 5765 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
1 ... m )  =  ( 1 ... (
k  -  1 ) ) )
1312sumeq1d 12104 . . . . . . . . . 10  |-  ( m  =  ( k  - 
1 )  ->  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )
1413fveq2d 5427 . . . . . . . . 9  |-  ( m  =  ( k  - 
1 )  ->  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
1514breq1d 3973 . . . . . . . 8  |-  ( m  =  ( k  - 
1 )  ->  (
( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  <->  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )
)
1615rcla4v 2831 . . . . . . 7  |-  ( ( k  -  1 )  e.  ZZ  ->  ( A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  ->  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )
)
1710, 11, 16sylc 58 . . . . . 6  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)
185ad2antrr 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( 2  x.  b )  e.  RR+ )
1918rpge0d 10326 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  0  <_  (
2  x.  b ) )
20 sumeq1 12092 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k ... m )  =  (/)  ->  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  sum_ n  e.  (/)  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )
21 sum0 12124 . . . . . . . . . . . . . . . . . . . 20  |-  sum_ n  e.  (/)  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  0
2220, 21syl6eq 2304 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k ... m )  =  (/)  ->  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  0 )
2322fveq2d 5427 . . . . . . . . . . . . . . . . . 18  |-  ( ( k ... m )  =  (/)  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( abs `  0 ) )
24 abs0 11700 . . . . . . . . . . . . . . . . . 18  |-  ( abs `  0 )  =  0
2523, 24syl6eq 2304 . . . . . . . . . . . . . . . . 17  |-  ( ( k ... m )  =  (/)  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  0 )
2625breq1d 3973 . . . . . . . . . . . . . . . 16  |-  ( ( k ... m )  =  (/)  ->  ( ( abs `  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
( 2  x.  b
)  <->  0  <_  (
2  x.  b ) ) )
2719, 26syl5ibrcom 215 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ( k ... m )  =  (/)  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
2827imp 420 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( k ... m )  =  (/) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
2928a1d 24 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( k ... m )  =  (/) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
30 fzn0 10740 . . . . . . . . . . . . . 14  |-  ( ( k ... m )  =/=  (/)  <->  m  e.  ( ZZ>=
`  k ) )
31 fzfid 10966 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... m )  e.  Fin )
32 elfznn 10750 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... m )  ->  n  e.  NN )
33 simpr 449 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  n  e.  NN )
3433nnrpd 10321 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  n  e.  RR+ )
351pntrf 20639 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  R : RR+
--> RR
3635ffvelrni 5563 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  RR+  ->  ( R `
 n )  e.  RR )
3734, 36syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( R `
 n )  e.  RR )
3833peano2nnd 9696 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
3933, 38nnmulcld 9726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( n  x.  ( n  + 
1 ) )  e.  NN )
4037, 39nndivred 9727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  RR )
4132, 40sylan2 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( 1 ... m
) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
4231, 41fsumrecl 12137 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  RR )
4342recnd 8794 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
4443abscld 11848 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
45 fzfid 10966 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... ( k  -  1 ) )  e.  Fin )
46 elfznn 10750 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... ( k  -  1 ) )  ->  n  e.  NN )
4746, 40sylan2 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( 1 ... (
k  -  1 ) ) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
4845, 47fsumrecl 12137 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  RR )
4948recnd 8794 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
5049abscld 11848 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
51 simplll 737 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  b  e.  RR+ )
5251rpred 10322 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  b  e.  RR )
53 le2add 9189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  RR )  /\  ( b  e.  RR  /\  b  e.  RR ) )  -> 
( ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( b  +  b ) ) )
5444, 50, 52, 52, 53syl22anc 1188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( b  +  b ) ) )
5552recnd 8794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  b  e.  CC )
56552timesd 9886 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 2  x.  b )  =  ( b  +  b ) )
5756breq2d 3975 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b )  <->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )  <_  ( b  +  b ) ) )
58 simpllr 738 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  NN )
5958nnred 9694 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  RR )
6059ltm1d 9622 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( k  - 
1 )  <  k
)
61 fzdisj 10748 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  -  1 )  <  k  ->  (
( 1 ... (
k  -  1 ) )  i^i  ( k ... m ) )  =  (/) )
6260, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( 1 ... ( k  - 
1 ) )  i^i  ( k ... m
) )  =  (/) )
6358nncnd 9695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  CC )
64 ax-1cn 8728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  CC
65 npcan 8993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
6663, 64, 65sylancl 646 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( k  -  1 )  +  1 )  =  k )
6766, 58eqeltrd 2330 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( k  -  1 )  +  1 )  e.  NN )
68 nnuz 10195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  NN  =  ( ZZ>= `  1 )
6967, 68syl6eleq 2346 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( k  -  1 )  +  1 )  e.  (
ZZ>= `  1 ) )
7058nnzd 10048 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  ZZ )
7170, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( k  - 
1 )  e.  ZZ )
72 simplr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  k  e.  NN )
7372nncnd 9695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  k  e.  CC )
7473, 64, 65sylancl 646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ( k  -  1 )  +  1 )  =  k )
7574fveq2d 5427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ZZ>= `  (
( k  -  1 )  +  1 ) )  =  ( ZZ>= `  k ) )
7675eleq2d 2323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( m  e.  ( ZZ>= `  ( (
k  -  1 )  +  1 ) )  <-> 
m  e.  ( ZZ>= `  k ) ) )
7776biimpar 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  m  e.  (
ZZ>= `  ( ( k  -  1 )  +  1 ) ) )
78 peano2uzr 10206 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( k  -  1 )  e.  ZZ  /\  m  e.  ( ZZ>= `  ( ( k  - 
1 )  +  1 ) ) )  ->  m  e.  ( ZZ>= `  ( k  -  1 ) ) )
7971, 77, 78syl2anc 645 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  m  e.  (
ZZ>= `  ( k  - 
1 ) ) )
80 fzsplit2 10746 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( k  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  m  e.  ( ZZ>= `  ( k  -  1 ) ) )  ->  ( 1 ... m )  =  ( ( 1 ... ( k  -  1 ) )  u.  (
( ( k  - 
1 )  +  1 ) ... m ) ) )
8169, 79, 80syl2anc 645 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... m )  =  ( ( 1 ... (
k  -  1 ) )  u.  ( ( ( k  -  1 )  +  1 ) ... m ) ) )
8266oveq1d 5772 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( k  -  1 )  +  1 ) ... m )  =  ( k ... m ) )
8382uneq2d 3271 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( 1 ... ( k  - 
1 ) )  u.  ( ( ( k  -  1 )  +  1 ) ... m
) )  =  ( ( 1 ... (
k  -  1 ) )  u.  ( k ... m ) ) )
8481, 83eqtrd 2288 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... m )  =  ( ( 1 ... (
k  -  1 ) )  u.  ( k ... m ) ) )
8541recnd 8794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( 1 ... m
) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  CC )
8662, 84, 31, 85fsumsplit 12142 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  =  ( sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  + 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
8786oveq1d 5772 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  + 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  -  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
88 fzfid 10966 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( k ... m )  e.  Fin )
89 elfzuz 10725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  ( k ... m )  ->  n  e.  ( ZZ>= `  k )
)
9068uztrn2 10177 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( k  e.  NN  /\  n  e.  ( ZZ>= `  k ) )  ->  n  e.  NN )
9158, 89, 90syl2an 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( k ... m
) )  ->  n  e.  NN )
9291, 40syldan 458 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( k ... m
) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
9388, 92fsumrecl 12137 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  RR )
9493recnd 8794 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
9549, 94pncan2d 9092 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  + 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  -  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  = 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )
9687, 95eqtrd 2288 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  =  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )
9796fveq2d 5427 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )  =  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )
9843, 49abs2dif2d 11870 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )  <_ 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) ) )
9997, 98eqbrtrrd 3985 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) ) )
10094abscld 11848 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
10144, 50readdcld 8795 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )  e.  RR )
102 2re 9748 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  RR
103102a1i 12 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  2  e.  RR )
104103, 52remulcld 8796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 2  x.  b )  e.  RR )
105 letr 8847 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR  /\  (
( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  e.  RR  /\  ( 2  x.  b
)  e.  RR )  ->  ( ( ( abs `  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  /\  ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
106100, 101, 104, 105syl3anc 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  /\  ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10799, 106mpand 659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b )  -> 
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10857, 107sylbird 228 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( b  +  b )  -> 
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10954, 108syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
110109ancomsd 442 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
11130, 110sylan2b 463 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( k ... m )  =/=  (/) )  -> 
( ( ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b  /\  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
11229, 111pm2.61dane 2497 . . . . . . . . . . . 12  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
113112imp 420 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b  /\  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
114113an4s 802 . . . . . . . . . 10  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  /\  ( m  e.  ZZ  /\  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
115114expr 601 . . . . . . . . 9  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  /\  m  e.  ZZ )  ->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  (
2  x.  b ) ) )
116115ralimdva 2592 . . . . . . . 8  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
117116impancom 429 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
118117an32s 782 . . . . . 6  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
11917, 118mpd 16 . . . . 5  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
120119ralrimiva 2597 . . . 4  |-  ( ( b  e.  RR+  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)  ->  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
121 breq2 3967 . . . . . 6  |-  ( c  =  ( 2  x.  b )  ->  (
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  <->  ( abs ` 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  ( 2  x.  b ) ) )
1221212ralbidv 2556 . . . . 5  |-  ( c  =  ( 2  x.  b )  ->  ( A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c  <->  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  (
2  x.  b ) ) )
123122rcla4ev 2835 . . . 4  |-  ( ( ( 2  x.  b
)  e.  RR+  /\  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )  ->  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
1246, 120, 123syl2anc 645 . . 3  |-  ( ( b  e.  RR+  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)  ->  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
125124rexlimiva 2633 . 2  |-  ( E. b  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
1262, 125ax-mp 10 1  |-  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517    u. cun 3092    i^i cin 3093   (/)c0 3397   class class class wbr 3963    e. cmpt 4017   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675    < clt 8800    <_ cle 8801    - cmin 8970    / cdiv 9356   NNcn 9679   2c2 9728   ZZcz 9956   ZZ>=cuz 10162   RR+crp 10286   ...cfz 10713   abscabs 11649   sum_csu 12088  ψcchp 20257
This theorem is referenced by:  pntpbnd  20664
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-o1 11894  df-lo1 11895  df-sum 12089  df-ef 12276  df-e 12277  df-sin 12278  df-cos 12279  df-pi 12281  df-divides 12459  df-gcd 12613  df-prime 12686  df-pc 12817  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-cmp 17041  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144  df-log 19841  df-cxp 19842  df-em 20214  df-cht 20261  df-vma 20262  df-chp 20263  df-ppi 20264
  Copyright terms: Public domain W3C validator