Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointpsubN Structured version   Unicode version

Theorem pointpsubN 30485
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointpsub.p  |-  P  =  ( Points `  K )
pointpsub.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
pointpsubN  |-  ( ( K  e.  AtLat  /\  X  e.  P )  ->  X  e.  S )

Proof of Theorem pointpsubN
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
2 pointpsub.p . . . 4  |-  P  =  ( Points `  K )
31, 2ispointN 30476 . . 3  |-  ( K  e.  AtLat  ->  ( X  e.  P  <->  E. q  e.  (
Atoms `  K ) X  =  { q } ) )
4 pointpsub.s . . . . . . 7  |-  S  =  ( PSubSp `  K )
51, 4snatpsubN 30484 . . . . . 6  |-  ( ( K  e.  AtLat  /\  q  e.  ( Atoms `  K )
)  ->  { q }  e.  S )
65ex 424 . . . . 5  |-  ( K  e.  AtLat  ->  ( q  e.  ( Atoms `  K )  ->  { q }  e.  S ) )
7 eleq1a 2504 . . . . 5  |-  ( { q }  e.  S  ->  ( X  =  {
q }  ->  X  e.  S ) )
86, 7syl6 31 . . . 4  |-  ( K  e.  AtLat  ->  ( q  e.  ( Atoms `  K )  ->  ( X  =  {
q }  ->  X  e.  S ) ) )
98rexlimdv 2821 . . 3  |-  ( K  e.  AtLat  ->  ( E. q  e.  ( Atoms `  K ) X  =  { q }  ->  X  e.  S ) )
103, 9sylbid 207 . 2  |-  ( K  e.  AtLat  ->  ( X  e.  P  ->  X  e.  S ) )
1110imp 419 1  |-  ( ( K  e.  AtLat  /\  X  e.  P )  ->  X  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   {csn 3806   ` cfv 5446   Atomscatm 29998   AtLatcal 29999   PointscpointsN 30229   PSubSpcpsubsp 30230
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-join 14425  df-lat 14467  df-covers 30001  df-ats 30002  df-atl 30033  df-pointsN 30236  df-psubsp 30237
  Copyright terms: Public domain W3C validator