Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Unicode version

Theorem pol1N 30099
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a  |-  A  =  ( Atoms `  K )
polssat.p  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
pol1N  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  (/) )

Proof of Theorem pol1N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 ssid 3197 . . 3  |-  A  C_  A
2 eqid 2283 . . . 4  |-  ( lub `  K )  =  ( lub `  K )
3 eqid 2283 . . . 4  |-  ( oc
`  K )  =  ( oc `  K
)
4 polssat.a . . . 4  |-  A  =  ( Atoms `  K )
5 eqid 2283 . . . 4  |-  ( pmap `  K )  =  (
pmap `  K )
6 polssat.p . . . 4  |-  ._|_  =  ( _|_ P `  K
)
72, 3, 4, 5, 6polval2N 30095 . . 3  |-  ( ( K  e.  HL  /\  A  C_  A )  -> 
(  ._|_  `  A )  =  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  A ) ) ) )
81, 7mpan2 652 . 2  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  ( ( pmap `  K
) `  ( ( oc `  K ) `  ( ( lub `  K
) `  A )
) ) )
9 hlop 29552 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
10 eqid 2283 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
1110, 4atbase 29479 . . . . . . . . . 10  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
12 eqid 2283 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2283 . . . . . . . . . . 11  |-  ( 1.
`  K )  =  ( 1. `  K
)
1410, 12, 13ople1 29381 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  ->  p ( le `  K ) ( 1.
`  K ) )
159, 11, 14syl2an 463 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  A )  ->  p ( le `  K ) ( 1.
`  K ) )
1615ralrimiva 2626 . . . . . . . 8  |-  ( K  e.  HL  ->  A. p  e.  A  p ( le `  K ) ( 1. `  K ) )
17 rabid2 2717 . . . . . . . 8  |-  ( A  =  { p  e.  A  |  p ( le `  K ) ( 1. `  K
) }  <->  A. p  e.  A  p ( le `  K ) ( 1. `  K ) )
1816, 17sylibr 203 . . . . . . 7  |-  ( K  e.  HL  ->  A  =  { p  e.  A  |  p ( le `  K ) ( 1.
`  K ) } )
1918fveq2d 5529 . . . . . 6  |-  ( K  e.  HL  ->  (
( lub `  K
) `  A )  =  ( ( lub `  K ) `  {
p  e.  A  |  p ( le `  K ) ( 1.
`  K ) } ) )
20 hlomcmat 29554 . . . . . . 7  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
2110, 13op1cl 29375 . . . . . . . 8  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  ( Base `  K
) )
229, 21syl 15 . . . . . . 7  |-  ( K  e.  HL  ->  ( 1. `  K )  e.  ( Base `  K
) )
2310, 12, 2, 4atlatmstc 29509 . . . . . . 7  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  ( 1. `  K )  e.  ( Base `  K
) )  ->  (
( lub `  K
) `  { p  e.  A  |  p
( le `  K
) ( 1. `  K ) } )  =  ( 1. `  K ) )
2420, 22, 23syl2anc 642 . . . . . 6  |-  ( K  e.  HL  ->  (
( lub `  K
) `  { p  e.  A  |  p
( le `  K
) ( 1. `  K ) } )  =  ( 1. `  K ) )
2519, 24eqtr2d 2316 . . . . 5  |-  ( K  e.  HL  ->  ( 1. `  K )  =  ( ( lub `  K
) `  A )
)
2625fveq2d 5529 . . . 4  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( ( oc `  K ) `  (
( lub `  K
) `  A )
) )
27 eqid 2283 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2827, 13, 3opoc1 29392 . . . . 5  |-  ( K  e.  OP  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( 0. `  K
) )
299, 28syl 15 . . . 4  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( 0. `  K
) )
3026, 29eqtr3d 2317 . . 3  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( ( lub `  K ) `  A ) )  =  ( 0. `  K
) )
3130fveq2d 5529 . 2  |-  ( K  e.  HL  ->  (
( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  A )
) )  =  ( ( pmap `  K
) `  ( 0. `  K ) ) )
32 hlatl 29550 . . 3  |-  ( K  e.  HL  ->  K  e.  AtLat )
3327, 5pmap0 29954 . . 3  |-  ( K  e.  AtLat  ->  ( ( pmap `  K ) `  ( 0. `  K ) )  =  (/) )
3432, 33syl 15 . 2  |-  ( K  e.  HL  ->  (
( pmap `  K ) `  ( 0. `  K
) )  =  (/) )
358, 31, 343eqtrd 2319 1  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    C_ wss 3152   (/)c0 3455   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   occoc 13216   lubclub 14076   0.cp0 14143   1.cp1 14144   CLatccla 14213   OPcops 29362   OMLcoml 29365   Atomscatm 29453   AtLatcal 29454   HLchlt 29540   pmapcpmap 29686   _|_
PcpolN 30091
This theorem is referenced by:  2pol0N  30100  1psubclN  30133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-pmap 29693  df-polarityN 30092
  Copyright terms: Public domain W3C validator