Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Unicode version

Theorem pol1N 29003
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a  |-  A  =  ( Atoms `  K )
polssat.p  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
pol1N  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  (/) )

Proof of Theorem pol1N
StepHypRef Expression
1 ssid 3118 . . 3  |-  A  C_  A
2 eqid 2253 . . . 4  |-  ( lub `  K )  =  ( lub `  K )
3 eqid 2253 . . . 4  |-  ( oc
`  K )  =  ( oc `  K
)
4 polssat.a . . . 4  |-  A  =  ( Atoms `  K )
5 eqid 2253 . . . 4  |-  ( pmap `  K )  =  (
pmap `  K )
6 polssat.p . . . 4  |-  ._|_  =  ( _|_ P `  K
)
72, 3, 4, 5, 6polval2N 28999 . . 3  |-  ( ( K  e.  HL  /\  A  C_  A )  -> 
(  ._|_  `  A )  =  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  A ) ) ) )
81, 7mpan2 655 . 2  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  ( ( pmap `  K
) `  ( ( oc `  K ) `  ( ( lub `  K
) `  A )
) ) )
9 hlop 28456 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
10 eqid 2253 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
1110, 4atbase 28383 . . . . . . . . . 10  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
12 eqid 2253 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2253 . . . . . . . . . . 11  |-  ( 1.
`  K )  =  ( 1. `  K
)
1410, 12, 13ople1 28285 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  ->  p ( le `  K ) ( 1.
`  K ) )
159, 11, 14syl2an 465 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  A )  ->  p ( le `  K ) ( 1.
`  K ) )
1615ralrimiva 2588 . . . . . . . 8  |-  ( K  e.  HL  ->  A. p  e.  A  p ( le `  K ) ( 1. `  K ) )
17 rabid2 2676 . . . . . . . 8  |-  ( A  =  { p  e.  A  |  p ( le `  K ) ( 1. `  K
) }  <->  A. p  e.  A  p ( le `  K ) ( 1. `  K ) )
1816, 17sylibr 205 . . . . . . 7  |-  ( K  e.  HL  ->  A  =  { p  e.  A  |  p ( le `  K ) ( 1.
`  K ) } )
1918fveq2d 5381 . . . . . 6  |-  ( K  e.  HL  ->  (
( lub `  K
) `  A )  =  ( ( lub `  K ) `  {
p  e.  A  |  p ( le `  K ) ( 1.
`  K ) } ) )
20 hlomcmat 28458 . . . . . . 7  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
2110, 13op1cl 28279 . . . . . . . 8  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  ( Base `  K
) )
229, 21syl 17 . . . . . . 7  |-  ( K  e.  HL  ->  ( 1. `  K )  e.  ( Base `  K
) )
2310, 12, 2, 4atlatmstc 28413 . . . . . . 7  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  ( 1. `  K )  e.  ( Base `  K
) )  ->  (
( lub `  K
) `  { p  e.  A  |  p
( le `  K
) ( 1. `  K ) } )  =  ( 1. `  K ) )
2420, 22, 23syl2anc 645 . . . . . 6  |-  ( K  e.  HL  ->  (
( lub `  K
) `  { p  e.  A  |  p
( le `  K
) ( 1. `  K ) } )  =  ( 1. `  K ) )
2519, 24eqtr2d 2286 . . . . 5  |-  ( K  e.  HL  ->  ( 1. `  K )  =  ( ( lub `  K
) `  A )
)
2625fveq2d 5381 . . . 4  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( ( oc `  K ) `  (
( lub `  K
) `  A )
) )
27 eqid 2253 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2827, 13, 3opoc1 28296 . . . . 5  |-  ( K  e.  OP  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( 0. `  K
) )
299, 28syl 17 . . . 4  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( 0. `  K
) )
3026, 29eqtr3d 2287 . . 3  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( ( lub `  K ) `  A ) )  =  ( 0. `  K
) )
3130fveq2d 5381 . 2  |-  ( K  e.  HL  ->  (
( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  A )
) )  =  ( ( pmap `  K
) `  ( 0. `  K ) ) )
32 hlatl 28454 . . 3  |-  ( K  e.  HL  ->  K  e.  AtLat )
3327, 5pmap0 28858 . . 3  |-  ( K  e.  AtLat  ->  ( ( pmap `  K ) `  ( 0. `  K ) )  =  (/) )
3432, 33syl 17 . 2  |-  ( K  e.  HL  ->  (
( pmap `  K ) `  ( 0. `  K
) )  =  (/) )
358, 31, 343eqtrd 2289 1  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   {crab 2512    C_ wss 3078   (/)c0 3362   class class class wbr 3920   ` cfv 4592   Basecbs 13022   lecple 13089   occoc 13090   lubclub 13920   0.cp0 13987   1.cp1 13988   CLatccla 14057   OPcops 28266   OMLcoml 28269   Atomscatm 28357   AtLatcal 28358   HLchlt 28444   pmapcpmap 28590   _|_
PcpolN 28995
This theorem is referenced by:  2pol0N  29004  1psubclN  29037
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-pmap 28597  df-polarityN 28996
  Copyright terms: Public domain W3C validator