HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid2i Unicode version

Theorem polid2i 21728
Description: Generalized polarization identity. Generalization of Exercise 4(a) of [ReedSimon] p. 63. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
polid2.1  |-  A  e. 
~H
polid2.2  |-  B  e. 
~H
polid2.3  |-  C  e. 
~H
polid2.4  |-  D  e. 
~H
Assertion
Ref Expression
polid2i  |-  ( A 
.ih  B )  =  ( ( ( ( ( A  +h  C
)  .ih  ( D  +h  B ) )  -  ( ( A  -h  C )  .ih  ( D  -h  B ) ) )  +  ( _i  x.  ( ( ( A  +h  ( _i  .h  C ) ) 
.ih  ( D  +h  ( _i  .h  B
) ) )  -  ( ( A  -h  ( _i  .h  C
) )  .ih  ( D  -h  ( _i  .h  B ) ) ) ) ) )  / 
4 )

Proof of Theorem polid2i
StepHypRef Expression
1 polid2.1 . . . 4  |-  A  e. 
~H
2 polid2.2 . . . 4  |-  B  e. 
~H
31, 2hicli 21652 . . 3  |-  ( A 
.ih  B )  e.  CC
4 4cn 9815 . . 3  |-  4  e.  CC
5 4re 9814 . . . 4  |-  4  e.  RR
6 4pos 9827 . . . 4  |-  0  <  4
75, 6gt0ne0ii 9304 . . 3  |-  4  =/=  0
83, 4, 7divcan3i 9501 . 2  |-  ( ( 4  x.  ( A 
.ih  B ) )  /  4 )  =  ( A  .ih  B
)
9 2cn 9811 . . . . 5  |-  2  e.  CC
10 polid2.3 . . . . . . 7  |-  C  e. 
~H
11 polid2.4 . . . . . . 7  |-  D  e. 
~H
1210, 11hicli 21652 . . . . . 6  |-  ( C 
.ih  D )  e.  CC
133, 12addcli 8836 . . . . 5  |-  ( ( A  .ih  B )  +  ( C  .ih  D ) )  e.  CC
143, 12subcli 9117 . . . . 5  |-  ( ( A  .ih  B )  -  ( C  .ih  D ) )  e.  CC
159, 13, 14adddii 8842 . . . 4  |-  ( 2  x.  ( ( ( A  .ih  B )  +  ( C  .ih  D ) )  +  ( ( A  .ih  B
)  -  ( C 
.ih  D ) ) ) )  =  ( ( 2  x.  (
( A  .ih  B
)  +  ( C 
.ih  D ) ) )  +  ( 2  x.  ( ( A 
.ih  B )  -  ( C  .ih  D ) ) ) )
16 ppncan 9084 . . . . . . . 8  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( C  .ih  D )  e.  CC  /\  ( A  .ih  B )  e.  CC )  ->  (
( ( A  .ih  B )  +  ( C 
.ih  D ) )  +  ( ( A 
.ih  B )  -  ( C  .ih  D ) ) )  =  ( ( A  .ih  B
)  +  ( A 
.ih  B ) ) )
173, 12, 3, 16mp3an 1282 . . . . . . 7  |-  ( ( ( A  .ih  B
)  +  ( C 
.ih  D ) )  +  ( ( A 
.ih  B )  -  ( C  .ih  D ) ) )  =  ( ( A  .ih  B
)  +  ( A 
.ih  B ) )
1832timesi 9840 . . . . . . 7  |-  ( 2  x.  ( A  .ih  B ) )  =  ( ( A  .ih  B
)  +  ( A 
.ih  B ) )
1917, 18eqtr4i 2307 . . . . . 6  |-  ( ( ( A  .ih  B
)  +  ( C 
.ih  D ) )  +  ( ( A 
.ih  B )  -  ( C  .ih  D ) ) )  =  ( 2  x.  ( A 
.ih  B ) )
2019oveq2i 5830 . . . . 5  |-  ( 2  x.  ( ( ( A  .ih  B )  +  ( C  .ih  D ) )  +  ( ( A  .ih  B
)  -  ( C 
.ih  D ) ) ) )  =  ( 2  x.  ( 2  x.  ( A  .ih  B ) ) )
219, 9, 3mulassi 8841 . . . . 5  |-  ( ( 2  x.  2 )  x.  ( A  .ih  B ) )  =  ( 2  x.  ( 2  x.  ( A  .ih  B ) ) )
22 2t2e4 9866 . . . . . 6  |-  ( 2  x.  2 )  =  4
2322oveq1i 5829 . . . . 5  |-  ( ( 2  x.  2 )  x.  ( A  .ih  B ) )  =  ( 4  x.  ( A 
.ih  B ) )
2420, 21, 233eqtr2ri 2311 . . . 4  |-  ( 4  x.  ( A  .ih  B ) )  =  ( 2  x.  ( ( ( A  .ih  B
)  +  ( C 
.ih  D ) )  +  ( ( A 
.ih  B )  -  ( C  .ih  D ) ) ) )
251, 11hicli 21652 . . . . . . . 8  |-  ( A 
.ih  D )  e.  CC
2610, 2hicli 21652 . . . . . . . 8  |-  ( C 
.ih  B )  e.  CC
2725, 26addcli 8836 . . . . . . 7  |-  ( ( A  .ih  D )  +  ( C  .ih  B ) )  e.  CC
2827, 13, 13pnncani 9136 . . . . . 6  |-  ( ( ( ( A  .ih  D )  +  ( C 
.ih  B ) )  +  ( ( A 
.ih  B )  +  ( C  .ih  D
) ) )  -  ( ( ( A 
.ih  D )  +  ( C  .ih  B
) )  -  (
( A  .ih  B
)  +  ( C 
.ih  D ) ) ) )  =  ( ( ( A  .ih  B )  +  ( C 
.ih  D ) )  +  ( ( A 
.ih  B )  +  ( C  .ih  D
) ) )
291, 10, 11, 2normlem8 21688 . . . . . . 7  |-  ( ( A  +h  C ) 
.ih  ( D  +h  B ) )  =  ( ( ( A 
.ih  D )  +  ( C  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( C 
.ih  D ) ) )
301, 10, 11, 2normlem9 21689 . . . . . . 7  |-  ( ( A  -h  C ) 
.ih  ( D  -h  B ) )  =  ( ( ( A 
.ih  D )  +  ( C  .ih  B
) )  -  (
( A  .ih  B
)  +  ( C 
.ih  D ) ) )
3129, 30oveq12i 5831 . . . . . 6  |-  ( ( ( A  +h  C
)  .ih  ( D  +h  B ) )  -  ( ( A  -h  C )  .ih  ( D  -h  B ) ) )  =  ( ( ( ( A  .ih  D )  +  ( C 
.ih  B ) )  +  ( ( A 
.ih  B )  +  ( C  .ih  D
) ) )  -  ( ( ( A 
.ih  D )  +  ( C  .ih  B
) )  -  (
( A  .ih  B
)  +  ( C 
.ih  D ) ) ) )
32132timesi 9840 . . . . . 6  |-  ( 2  x.  ( ( A 
.ih  B )  +  ( C  .ih  D
) ) )  =  ( ( ( A 
.ih  B )  +  ( C  .ih  D
) )  +  ( ( A  .ih  B
)  +  ( C 
.ih  D ) ) )
3328, 31, 323eqtr4i 2314 . . . . 5  |-  ( ( ( A  +h  C
)  .ih  ( D  +h  B ) )  -  ( ( A  -h  C )  .ih  ( D  -h  B ) ) )  =  ( 2  x.  ( ( A 
.ih  B )  +  ( C  .ih  D
) ) )
34 ax-icn 8791 . . . . . . . . . . 11  |-  _i  e.  CC
3534, 10hvmulcli 21586 . . . . . . . . . 10  |-  ( _i  .h  C )  e. 
~H
3634, 2hvmulcli 21586 . . . . . . . . . 10  |-  ( _i  .h  B )  e. 
~H
371, 35, 11, 36normlem8 21688 . . . . . . . . 9  |-  ( ( A  +h  ( _i  .h  C ) ) 
.ih  ( D  +h  ( _i  .h  B
) ) )  =  ( ( ( A 
.ih  D )  +  ( ( _i  .h  C )  .ih  (
_i  .h  B )
) )  +  ( ( A  .ih  (
_i  .h  B )
)  +  ( ( _i  .h  C ) 
.ih  D ) ) )
381, 35, 11, 36normlem9 21689 . . . . . . . . 9  |-  ( ( A  -h  ( _i  .h  C ) ) 
.ih  ( D  -h  ( _i  .h  B
) ) )  =  ( ( ( A 
.ih  D )  +  ( ( _i  .h  C )  .ih  (
_i  .h  B )
) )  -  (
( A  .ih  (
_i  .h  B )
)  +  ( ( _i  .h  C ) 
.ih  D ) ) )
3937, 38oveq12i 5831 . . . . . . . 8  |-  ( ( ( A  +h  (
_i  .h  C )
)  .ih  ( D  +h  ( _i  .h  B
) ) )  -  ( ( A  -h  ( _i  .h  C
) )  .ih  ( D  -h  ( _i  .h  B ) ) ) )  =  ( ( ( ( A  .ih  D )  +  ( ( _i  .h  C ) 
.ih  ( _i  .h  B ) ) )  +  ( ( A 
.ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D
) ) )  -  ( ( ( A 
.ih  D )  +  ( ( _i  .h  C )  .ih  (
_i  .h  B )
) )  -  (
( A  .ih  (
_i  .h  B )
)  +  ( ( _i  .h  C ) 
.ih  D ) ) ) )
4035, 36hicli 21652 . . . . . . . . . 10  |-  ( ( _i  .h  C ) 
.ih  ( _i  .h  B ) )  e.  CC
4125, 40addcli 8836 . . . . . . . . 9  |-  ( ( A  .ih  D )  +  ( ( _i  .h  C )  .ih  ( _i  .h  B
) ) )  e.  CC
421, 36hicli 21652 . . . . . . . . . 10  |-  ( A 
.ih  ( _i  .h  B ) )  e.  CC
4335, 11hicli 21652 . . . . . . . . . 10  |-  ( ( _i  .h  C ) 
.ih  D )  e.  CC
4442, 43addcli 8836 . . . . . . . . 9  |-  ( ( A  .ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D ) )  e.  CC
4541, 44, 44pnncani 9136 . . . . . . . 8  |-  ( ( ( ( A  .ih  D )  +  ( ( _i  .h  C ) 
.ih  ( _i  .h  B ) ) )  +  ( ( A 
.ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D
) ) )  -  ( ( ( A 
.ih  D )  +  ( ( _i  .h  C )  .ih  (
_i  .h  B )
) )  -  (
( A  .ih  (
_i  .h  B )
)  +  ( ( _i  .h  C ) 
.ih  D ) ) ) )  =  ( ( ( A  .ih  ( _i  .h  B
) )  +  ( ( _i  .h  C
)  .ih  D )
)  +  ( ( A  .ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D ) ) )
46442timesi 9840 . . . . . . . . 9  |-  ( 2  x.  ( ( A 
.ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D
) ) )  =  ( ( ( A 
.ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D
) )  +  ( ( A  .ih  (
_i  .h  B )
)  +  ( ( _i  .h  C ) 
.ih  D ) ) )
47 his5 21657 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( _i  .h  B ) )  =  ( ( * `  _i )  x.  ( A  .ih  B ) ) )
4834, 1, 2, 47mp3an 1282 . . . . . . . . . . . 12  |-  ( A 
.ih  ( _i  .h  B ) )  =  ( ( * `  _i )  x.  ( A  .ih  B ) )
49 cji 11638 . . . . . . . . . . . . 13  |-  ( * `
 _i )  = 
-u _i
5049oveq1i 5829 . . . . . . . . . . . 12  |-  ( ( * `  _i )  x.  ( A  .ih  B ) )  =  (
-u _i  x.  ( A  .ih  B ) )
5148, 50eqtri 2304 . . . . . . . . . . 11  |-  ( A 
.ih  ( _i  .h  B ) )  =  ( -u _i  x.  ( A  .ih  B ) )
52 ax-his3 21655 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  C  e.  ~H  /\  D  e.  ~H )  ->  (
( _i  .h  C
)  .ih  D )  =  ( _i  x.  ( C  .ih  D ) ) )
5334, 10, 11, 52mp3an 1282 . . . . . . . . . . 11  |-  ( ( _i  .h  C ) 
.ih  D )  =  ( _i  x.  ( C  .ih  D ) )
5451, 53oveq12i 5831 . . . . . . . . . 10  |-  ( ( A  .ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D ) )  =  ( ( -u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C  .ih  D ) ) )
5554oveq2i 5830 . . . . . . . . 9  |-  ( 2  x.  ( ( A 
.ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D
) ) )  =  ( 2  x.  (
( -u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C  .ih  D ) ) ) )
5646, 55eqtr3i 2306 . . . . . . . 8  |-  ( ( ( A  .ih  (
_i  .h  B )
)  +  ( ( _i  .h  C ) 
.ih  D ) )  +  ( ( A 
.ih  ( _i  .h  B ) )  +  ( ( _i  .h  C )  .ih  D
) ) )  =  ( 2  x.  (
( -u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C  .ih  D ) ) ) )
5739, 45, 563eqtri 2308 . . . . . . 7  |-  ( ( ( A  +h  (
_i  .h  C )
)  .ih  ( D  +h  ( _i  .h  B
) ) )  -  ( ( A  -h  ( _i  .h  C
) )  .ih  ( D  -h  ( _i  .h  B ) ) ) )  =  ( 2  x.  ( ( -u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C 
.ih  D ) ) ) )
5857oveq2i 5830 . . . . . 6  |-  ( _i  x.  ( ( ( A  +h  ( _i  .h  C ) ) 
.ih  ( D  +h  ( _i  .h  B
) ) )  -  ( ( A  -h  ( _i  .h  C
) )  .ih  ( D  -h  ( _i  .h  B ) ) ) ) )  =  ( _i  x.  ( 2  x.  ( ( -u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C 
.ih  D ) ) ) ) )
5934negcli 9109 . . . . . . . . 9  |-  -u _i  e.  CC
6059, 3mulcli 8837 . . . . . . . 8  |-  ( -u _i  x.  ( A  .ih  B ) )  e.  CC
6134, 12mulcli 8837 . . . . . . . 8  |-  ( _i  x.  ( C  .ih  D ) )  e.  CC
6260, 61addcli 8836 . . . . . . 7  |-  ( (
-u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C  .ih  D ) ) )  e.  CC
639, 34, 62mul12i 9002 . . . . . 6  |-  ( 2  x.  ( _i  x.  ( ( -u _i  x.  ( A  .ih  B
) )  +  ( _i  x.  ( C 
.ih  D ) ) ) ) )  =  ( _i  x.  (
2  x.  ( (
-u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C  .ih  D ) ) ) ) )
6434, 60, 61adddii 8842 . . . . . . . 8  |-  ( _i  x.  ( ( -u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C 
.ih  D ) ) ) )  =  ( ( _i  x.  ( -u _i  x.  ( A 
.ih  B ) ) )  +  ( _i  x.  ( _i  x.  ( C  .ih  D ) ) ) )
6534, 34mulneg2i 9221 . . . . . . . . . . . 12  |-  ( _i  x.  -u _i )  = 
-u ( _i  x.  _i )
66 ixi 9392 . . . . . . . . . . . . 13  |-  ( _i  x.  _i )  = 
-u 1
6766negeqi 9040 . . . . . . . . . . . 12  |-  -u (
_i  x.  _i )  =  -u -u 1
68 ax-1cn 8790 . . . . . . . . . . . . 13  |-  1  e.  CC
6968negnegi 9111 . . . . . . . . . . . 12  |-  -u -u 1  =  1
7065, 67, 693eqtri 2308 . . . . . . . . . . 11  |-  ( _i  x.  -u _i )  =  1
7170oveq1i 5829 . . . . . . . . . 10  |-  ( ( _i  x.  -u _i )  x.  ( A  .ih  B ) )  =  ( 1  x.  ( A  .ih  B ) )
7234, 59, 3mulassi 8841 . . . . . . . . . 10  |-  ( ( _i  x.  -u _i )  x.  ( A  .ih  B ) )  =  ( _i  x.  ( -u _i  x.  ( A 
.ih  B ) ) )
733mulid2i 8835 . . . . . . . . . 10  |-  ( 1  x.  ( A  .ih  B ) )  =  ( A  .ih  B )
7471, 72, 733eqtr3i 2312 . . . . . . . . 9  |-  ( _i  x.  ( -u _i  x.  ( A  .ih  B
) ) )  =  ( A  .ih  B
)
7566oveq1i 5829 . . . . . . . . . 10  |-  ( ( _i  x.  _i )  x.  ( C  .ih  D ) )  =  (
-u 1  x.  ( C  .ih  D ) )
7634, 34, 12mulassi 8841 . . . . . . . . . 10  |-  ( ( _i  x.  _i )  x.  ( C  .ih  D ) )  =  ( _i  x.  ( _i  x.  ( C  .ih  D ) ) )
7712mulm1i 9219 . . . . . . . . . 10  |-  ( -u
1  x.  ( C 
.ih  D ) )  =  -u ( C  .ih  D )
7875, 76, 773eqtr3i 2312 . . . . . . . . 9  |-  ( _i  x.  ( _i  x.  ( C  .ih  D ) ) )  =  -u ( C  .ih  D )
7974, 78oveq12i 5831 . . . . . . . 8  |-  ( ( _i  x.  ( -u _i  x.  ( A  .ih  B ) ) )  +  ( _i  x.  (
_i  x.  ( C  .ih  D ) ) ) )  =  ( ( A  .ih  B )  +  -u ( C  .ih  D ) )
803, 12negsubi 9119 . . . . . . . 8  |-  ( ( A  .ih  B )  +  -u ( C  .ih  D ) )  =  ( ( A  .ih  B
)  -  ( C 
.ih  D ) )
8164, 79, 803eqtri 2308 . . . . . . 7  |-  ( _i  x.  ( ( -u _i  x.  ( A  .ih  B ) )  +  ( _i  x.  ( C 
.ih  D ) ) ) )  =  ( ( A  .ih  B
)  -  ( C 
.ih  D ) )
8281oveq2i 5830 . . . . . 6  |-  ( 2  x.  ( _i  x.  ( ( -u _i  x.  ( A  .ih  B
) )  +  ( _i  x.  ( C 
.ih  D ) ) ) ) )  =  ( 2  x.  (
( A  .ih  B
)  -  ( C 
.ih  D ) ) )
8358, 63, 823eqtr2i 2310 . . . . 5  |-  ( _i  x.  ( ( ( A  +h  ( _i  .h  C ) ) 
.ih  ( D  +h  ( _i  .h  B
) ) )  -  ( ( A  -h  ( _i  .h  C
) )  .ih  ( D  -h  ( _i  .h  B ) ) ) ) )  =  ( 2  x.  ( ( A  .ih  B )  -  ( C  .ih  D ) ) )
8433, 83oveq12i 5831 . . . 4  |-  ( ( ( ( A  +h  C )  .ih  ( D  +h  B ) )  -  ( ( A  -h  C )  .ih  ( D  -h  B
) ) )  +  ( _i  x.  (
( ( A  +h  ( _i  .h  C
) )  .ih  ( D  +h  ( _i  .h  B ) ) )  -  ( ( A  -h  ( _i  .h  C ) )  .ih  ( D  -h  (
_i  .h  B )
) ) ) ) )  =  ( ( 2  x.  ( ( A  .ih  B )  +  ( C  .ih  D ) ) )  +  ( 2  x.  (
( A  .ih  B
)  -  ( C 
.ih  D ) ) ) )
8515, 24, 843eqtr4i 2314 . . 3  |-  ( 4  x.  ( A  .ih  B ) )  =  ( ( ( ( A  +h  C )  .ih  ( D  +h  B
) )  -  (
( A  -h  C
)  .ih  ( D  -h  B ) ) )  +  ( _i  x.  ( ( ( A  +h  ( _i  .h  C ) )  .ih  ( D  +h  (
_i  .h  B )
) )  -  (
( A  -h  (
_i  .h  C )
)  .ih  ( D  -h  ( _i  .h  B
) ) ) ) ) )
8685oveq1i 5829 . 2  |-  ( ( 4  x.  ( A 
.ih  B ) )  /  4 )  =  ( ( ( ( ( A  +h  C
)  .ih  ( D  +h  B ) )  -  ( ( A  -h  C )  .ih  ( D  -h  B ) ) )  +  ( _i  x.  ( ( ( A  +h  ( _i  .h  C ) ) 
.ih  ( D  +h  ( _i  .h  B
) ) )  -  ( ( A  -h  ( _i  .h  C
) )  .ih  ( D  -h  ( _i  .h  B ) ) ) ) ) )  / 
4 )
878, 86eqtr3i 2306 1  |-  ( A 
.ih  B )  =  ( ( ( ( ( A  +h  C
)  .ih  ( D  +h  B ) )  -  ( ( A  -h  C )  .ih  ( D  -h  B ) ) )  +  ( _i  x.  ( ( ( A  +h  ( _i  .h  C ) ) 
.ih  ( D  +h  ( _i  .h  B
) ) )  -  ( ( A  -h  ( _i  .h  C
) )  .ih  ( D  -h  ( _i  .h  B ) ) ) ) ) )  / 
4 )
Colors of variables: wff set class
Syntax hints:    = wceq 1628    e. wcel 1688   ` cfv 5221  (class class class)co 5819   CCcc 8730   1c1 8733   _ici 8734    + caddc 8735    x. cmul 8737    - cmin 9032   -ucneg 9033    / cdiv 9418   2c2 9790   4c4 9792   *ccj 11575   ~Hchil 21491    +h cva 21492    .h csm 21493    .ih csp 21494    -h cmv 21497
This theorem is referenced by:  polidi  21729  lnopeq0lem1  22577  lnophmlem2  22589
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-hfvadd 21572  ax-hfvmul 21577  ax-hfi 21650  ax-his1 21653  ax-his2 21654  ax-his3 21655
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-iota 6252  df-riota 6299  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-2 9799  df-3 9800  df-4 9801  df-cj 11578  df-re 11579  df-im 11580  df-hvsub 21543
  Copyright terms: Public domain W3C validator