Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Unicode version

Theorem polval2N 30392
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u  |-  U  =  ( lub `  K
)
polval2.o  |-  ._|_  =  ( oc `  K )
polval2.a  |-  A  =  ( Atoms `  K )
polval2.m  |-  M  =  ( pmap `  K
)
polval2.p  |-  P  =  ( _|_ P `  K )
Assertion
Ref Expression
polval2N  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )

Proof of Theorem polval2N
Dummy variables  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3  |-  ._|_  =  ( oc `  K )
2 polval2.a . . 3  |-  A  =  ( Atoms `  K )
3 polval2.m . . 3  |-  M  =  ( pmap `  K
)
4 polval2.p . . 3  |-  P  =  ( _|_ P `  K )
51, 2, 3, 4polvalN 30391 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
6 hlop 29849 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
76ad2antrr 707 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  K  e.  OP )
8 ssel2 3307 . . . . . . 7  |-  ( ( X  C_  A  /\  p  e.  X )  ->  p  e.  A )
98adantll 695 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  p  e.  A )
10 eqid 2408 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1110, 2atbase 29776 . . . . . 6  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
129, 11syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  p  e.  ( Base `  K )
)
1310, 1opoccl 29681 . . . . 5  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  -> 
(  ._|_  `  p )  e.  ( Base `  K
) )
147, 12, 13syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  (  ._|_  `  p )  e.  (
Base `  K )
)
1514ralrimiva 2753 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  A. p  e.  X  (  ._|_  `  p )  e.  ( Base `  K
) )
16 eqid 2408 . . . 4  |-  ( glb `  K )  =  ( glb `  K )
1710, 16, 2, 3pmapglb2xN 30258 . . 3  |-  ( ( K  e.  HL  /\  A. p  e.  X  ( 
._|_  `  p )  e.  ( Base `  K
) )  ->  ( M `  ( ( glb `  K ) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p
) } ) )  =  ( A  i^i  |^|_
p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
1815, 17syldan 457 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( M `  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } ) )  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
19 polval2.u . . . . . 6  |-  U  =  ( lub `  K
)
2010, 19, 16, 1glbconxN 29864 . . . . 5  |-  ( ( K  e.  HL  /\  A. p  e.  X  ( 
._|_  `  p )  e.  ( Base `  K
) )  ->  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) ) )
2115, 20syldan 457 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) ) )
2210, 1opococ 29682 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  -> 
(  ._|_  `  (  ._|_  `  p ) )  =  p )
237, 12, 22syl2anc 643 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  (  ._|_  `  (  ._|_  `  p ) )  =  p )
2423eqeq2d 2419 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  ( x  =  (  ._|_  `  (  ._|_  `  p ) )  <-> 
x  =  p ) )
2524rexbidva 2687 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( E. p  e.  X  x  =  ( 
._|_  `  (  ._|_  `  p
) )  <->  E. p  e.  X  x  =  p ) )
2625abbidv 2522 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) }  =  { x  |  E. p  e.  X  x  =  p }
)
27 df-rex 2676 . . . . . . . . . 10  |-  ( E. p  e.  X  x  =  p  <->  E. p
( p  e.  X  /\  x  =  p
) )
28 equcom 1688 . . . . . . . . . . . . 13  |-  ( x  =  p  <->  p  =  x )
2928anbi2i 676 . . . . . . . . . . . 12  |-  ( ( p  e.  X  /\  x  =  p )  <->  ( p  e.  X  /\  p  =  x )
)
30 ancom 438 . . . . . . . . . . . 12  |-  ( ( p  e.  X  /\  p  =  x )  <->  ( p  =  x  /\  p  e.  X )
)
3129, 30bitri 241 . . . . . . . . . . 11  |-  ( ( p  e.  X  /\  x  =  p )  <->  ( p  =  x  /\  p  e.  X )
)
3231exbii 1589 . . . . . . . . . 10  |-  ( E. p ( p  e.  X  /\  x  =  p )  <->  E. p
( p  =  x  /\  p  e.  X
) )
33 vex 2923 . . . . . . . . . . 11  |-  x  e. 
_V
34 eleq1 2468 . . . . . . . . . . 11  |-  ( p  =  x  ->  (
p  e.  X  <->  x  e.  X ) )
3533, 34ceqsexv 2955 . . . . . . . . . 10  |-  ( E. p ( p  =  x  /\  p  e.  X )  <->  x  e.  X )
3627, 32, 353bitri 263 . . . . . . . . 9  |-  ( E. p  e.  X  x  =  p  <->  x  e.  X )
3736abbii 2520 . . . . . . . 8  |-  { x  |  E. p  e.  X  x  =  p }  =  { x  |  x  e.  X }
38 abid2 2525 . . . . . . . 8  |-  { x  |  x  e.  X }  =  X
3937, 38eqtri 2428 . . . . . . 7  |-  { x  |  E. p  e.  X  x  =  p }  =  X
4026, 39syl6eq 2456 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) }  =  X )
4140fveq2d 5695 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  {
x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } )  =  ( U `
 X ) )
4241fveq2d 5695 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) )  =  (  ._|_  `  ( U `
 X ) ) )
4321, 42eqtrd 2440 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  X )
) )
4443fveq2d 5695 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( M `  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } ) )  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )
455, 18, 443eqtr2d 2446 1  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2394   A.wral 2670   E.wrex 2671    i^i cin 3283    C_ wss 3284   |^|_ciin 4058   ` cfv 5417   Basecbs 13428   occoc 13496   lubclub 14358   glbcglb 14359   OPcops 29659   Atomscatm 29750   HLchlt 29837   pmapcpmap 29983   _|_ PcpolN 30388
This theorem is referenced by:  polsubN  30393  pol1N  30396  polpmapN  30398  2polvalN  30400  3polN  30402  poldmj1N  30414  pnonsingN  30419  ispsubcl2N  30433  polsubclN  30438  poml4N  30439
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-ats 29754  df-hlat 29838  df-pmap 29990  df-polarityN 30389
  Copyright terms: Public domain W3C validator