MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pospo Unicode version

Theorem pospo 14123
Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pospo.b  |-  B  =  ( Base `  K
)
pospo.l  |-  .<_  =  ( le `  K )
pospo.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pospo  |-  ( K  e.  V  ->  ( K  e.  Poset  <->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) ) )

Proof of Theorem pospo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pospo.s . . . . 5  |-  .<  =  ( lt `  K )
21pltirr 14113 . . . 4  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  -.  x  .<  x )
3 pospo.b . . . . 5  |-  B  =  ( Base `  K
)
43, 1plttr 14120 . . . 4  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .<  y  /\  y  .<  z )  ->  x  .<  z ) )
52, 4ispod 4338 . . 3  |-  ( K  e.  Poset  ->  .<  Po  B
)
6 relres 4999 . . . . 5  |-  Rel  (  _I  |`  B )
76a1i 10 . . . 4  |-  ( K  e.  Poset  ->  Rel  (  _I  |`  B ) )
8 opabresid 5019 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  x ) }  =  (  _I  |`  B )
98eleq2i 2360 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  B  /\  y  =  x ) }  <->  <. x ,  y >.  e.  (  _I  |`  B ) )
10 opabid 4287 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  B  /\  y  =  x ) }  <->  ( x  e.  B  /\  y  =  x ) )
119, 10bitr3i 242 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  B )  <-> 
( x  e.  B  /\  y  =  x
) )
12 pospo.l . . . . . . . 8  |-  .<_  =  ( le `  K )
133, 12posref 14101 . . . . . . 7  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  x  .<_  x )
14 df-br 4040 . . . . . . . 8  |-  ( x 
.<_  y  <->  <. x ,  y
>.  e.  .<_  )
15 breq2 4043 . . . . . . . 8  |-  ( y  =  x  ->  (
x  .<_  y  <->  x  .<_  x ) )
1614, 15syl5bbr 250 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  y >.  e.  .<_ 
<->  x  .<_  x )
)
1713, 16syl5ibrcom 213 . . . . . 6  |-  ( ( K  e.  Poset  /\  x  e.  B )  ->  (
y  =  x  ->  <. x ,  y >.  e.  .<_  ) )
1817expimpd 586 . . . . 5  |-  ( K  e.  Poset  ->  ( (
x  e.  B  /\  y  =  x )  -> 
<. x ,  y >.  e.  .<_  ) )
1911, 18syl5bi 208 . . . 4  |-  ( K  e.  Poset  ->  ( <. x ,  y >.  e.  (  _I  |`  B )  -> 
<. x ,  y >.  e.  .<_  ) )
207, 19relssdv 4795 . . 3  |-  ( K  e.  Poset  ->  (  _I  |`  B )  C_  .<_  )
215, 20jca 518 . 2  |-  ( K  e.  Poset  ->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) )
22 elex 2809 . . . . 5  |-  ( K  e.  V  ->  K  e.  _V )
2322adantr 451 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  K  e.  _V )
243a1i 10 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  B  =  ( Base `  K ) )
2512a1i 10 . . . 4  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  .<_  =  ( le `  K ) )
26 eqid 2296 . . . . . 6  |-  x  =  x
27 simpr 447 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x  e.  B )
28 resieq 4981 . . . . . . 7  |-  ( ( x  e.  B  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  <->  x  =  x ) )
2927, 27, 28syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  <->  x  =  x ) )
3026, 29mpbiri 224 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x (  _I  |`  B ) x )
31 simplrr 737 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  (  _I  |`  B ) 
C_  .<_  )
3231ssbrd 4080 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  ( x (  _I  |`  B ) x  ->  x  .<_  x ) )
3330, 32mpd 14 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B )  ->  x  .<_  x )
343, 12, 1pleval2i 14114 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
( x  .<  y  \/  x  =  y
) ) )
35343adant1 973 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
( x  .<  y  \/  x  =  y
) ) )
363, 12, 1pleval2i 14114 . . . . . . 7  |-  ( ( y  e.  B  /\  x  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
3736ancoms 439 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
38373adant1 973 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( y  .<_  x  -> 
( y  .<  x  \/  y  =  x
) ) )
39 simprl 732 . . . . . . . 8  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  .<  Po  B )
40 po2nr 4343 . . . . . . . . 9  |-  ( ( 
.<  Po  B  /\  (
x  e.  B  /\  y  e.  B )
)  ->  -.  (
x  .<  y  /\  y  .<  x ) )
41403impb 1147 . . . . . . . 8  |-  ( ( 
.<  Po  B  /\  x  e.  B  /\  y  e.  B )  ->  -.  ( x  .<  y  /\  y  .<  x ) )
4239, 41syl3an1 1215 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  -.  ( x  .<  y  /\  y  .<  x
) )
4342pm2.21d 98 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<  y  /\  y  .<  x
)  ->  x  =  y ) )
44 simpl 443 . . . . . . 7  |-  ( ( x  =  y  /\  y  .<  x )  ->  x  =  y )
4544a1i 10 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  =  y  /\  y  .<  x )  ->  x  =  y ) )
46 simpr 447 . . . . . . . 8  |-  ( ( x  .<  y  /\  y  =  x )  ->  y  =  x )
4746eqcomd 2301 . . . . . . 7  |-  ( ( x  .<  y  /\  y  =  x )  ->  x  =  y )
4847a1i 10 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<  y  /\  y  =  x )  ->  x  =  y ) )
49 simpl 443 . . . . . . 7  |-  ( ( x  =  y  /\  y  =  x )  ->  x  =  y )
5049a1i 10 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  =  y  /\  y  =  x )  ->  x  =  y ) )
5143, 45, 48, 50ccased 913 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( ( x 
.<  y  \/  x  =  y )  /\  ( y  .<  x  \/  y  =  x
) )  ->  x  =  y ) )
5235, 38, 51syl2and 469 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y ) )
53 simpr1 961 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  e.  B )
54 simpr2 962 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  y  e.  B )
5553, 54, 34syl2anc 642 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .<_  y  ->  (
x  .<  y  \/  x  =  y ) ) )
56 simpr3 963 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  z  e.  B )
573, 12, 1pleval2i 14114 . . . . . 6  |-  ( ( y  e.  B  /\  z  e.  B )  ->  ( y  .<_  z  -> 
( y  .<  z  \/  y  =  z
) ) )
5854, 56, 57syl2anc 642 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
y  .<_  z  ->  (
y  .<  z  \/  y  =  z ) ) )
59 potr 4342 . . . . . . . 8  |-  ( ( 
.<  Po  B  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .<  y  /\  y  .<  z )  ->  x  .<  z ) )
6039, 59sylan 457 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  .<  z )  ->  x  .<  z
) )
61 simpll 730 . . . . . . . 8  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  K  e.  V )
6212, 1pltle 14111 . . . . . . . 8  |-  ( ( K  e.  V  /\  x  e.  B  /\  z  e.  B )  ->  ( x  .<  z  ->  x  .<_  z )
)
6361, 53, 56, 62syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .<  z  ->  x  .<_  z ) )
6460, 63syld 40 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  .<  z )  ->  x  .<_  z ) )
65 breq1 4042 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .<  z  <->  y  .<  z ) )
6665biimpar 471 . . . . . . 7  |-  ( ( x  =  y  /\  y  .<  z )  ->  x  .<  z )
6766, 63syl5 28 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  =  y  /\  y  .<  z
)  ->  x  .<_  z ) )
68 breq2 4043 . . . . . . . 8  |-  ( y  =  z  ->  (
x  .<  y  <->  x  .<  z ) )
6968biimpac 472 . . . . . . 7  |-  ( ( x  .<  y  /\  y  =  z )  ->  x  .<  z )
7069, 63syl5 28 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<  y  /\  y  =  z
)  ->  x  .<_  z ) )
7153, 33syldan 456 . . . . . . 7  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  .<_  x )
72 eqtr 2313 . . . . . . . 8  |-  ( ( x  =  y  /\  y  =  z )  ->  x  =  z )
7372breq2d 4051 . . . . . . 7  |-  ( ( x  =  y  /\  y  =  z )  ->  ( x  .<_  x  <->  x  .<_  z ) )
7471, 73syl5ibcom 211 . . . . . 6  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  =  y  /\  y  =  z )  ->  x  .<_  z ) )
7564, 67, 70, 74ccased 913 . . . . 5  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( ( x  .<  y  \/  x  =  y )  /\  ( y 
.<  z  \/  y  =  z ) )  ->  x  .<_  z ) )
7655, 58, 75syl2and 469 . . . 4  |-  ( ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )
7723, 24, 25, 33, 52, 76isposd 14105 . . 3  |-  ( ( K  e.  V  /\  (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  ) )  ->  K  e.  Poset )
7877ex 423 . 2  |-  ( K  e.  V  ->  (
(  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  )  ->  K  e.  Poset ) )
7921, 78impbid2 195 1  |-  ( K  e.  V  ->  ( K  e.  Poset  <->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801    C_ wss 3165   <.cop 3656   class class class wbr 4039   {copab 4092    _I cid 4320    Po wpo 4328    |` cres 4707   Rel wrel 4710   ` cfv 5271   Basecbs 13164   lecple 13231   Posetcpo 14090   ltcplt 14091
This theorem is referenced by:  tosso  14158
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fv 5279  df-poset 14096  df-plt 14108
  Copyright terms: Public domain W3C validator