MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppip1le Structured version   Unicode version

Theorem ppip1le 20944
Description: The prime pi function cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppip1le  |-  ( A  e.  RR  ->  (π `  ( A  +  1 ) )  <_  (
(π `  A )  +  1 ) )

Proof of Theorem ppip1le
StepHypRef Expression
1 flcl 11204 . . 3  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  ZZ )
2 zre 10286 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  RR )
3 peano2re 9239 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  RR )
42, 3syl 16 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  (
( |_ `  A
)  +  1 )  e.  RR )
54adantr 452 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  ( ( |_ `  A )  +  1 )  e.  RR )
6 ppicl 20914 . . . . . . 7  |-  ( ( ( |_ `  A
)  +  1 )  e.  RR  ->  (π `  ( ( |_ `  A )  +  1 ) )  e.  NN0 )
75, 6syl 16 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( ( |_
`  A )  +  1 ) )  e. 
NN0 )
87nn0red 10275 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( ( |_
`  A )  +  1 ) )  e.  RR )
9 ppiprm 20934 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( ( |_
`  A )  +  1 ) )  =  ( (π `  ( |_ `  A ) )  +  1 ) )
10 eqle 9176 . . . . 5  |-  ( ( (π `  ( ( |_
`  A )  +  1 ) )  e.  RR  /\  (π `  (
( |_ `  A
)  +  1 ) )  =  ( (π `  ( |_ `  A
) )  +  1 ) )  ->  (π `  ( ( |_ `  A )  +  1 ) )  <_  (
(π `  ( |_ `  A ) )  +  1 ) )
118, 9, 10syl2anc 643 . . . 4  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( ( |_
`  A )  +  1 ) )  <_ 
( (π `  ( |_ `  A ) )  +  1 ) )
12 ppinprm 20935 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  -.  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( ( |_
`  A )  +  1 ) )  =  (π `  ( |_ `  A ) ) )
13 ppicl 20914 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  RR  ->  (π `  ( |_ `  A
) )  e.  NN0 )
142, 13syl 16 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  (π `  ( |_ `  A
) )  e.  NN0 )
1514nn0red 10275 . . . . . . 7  |-  ( ( |_ `  A )  e.  ZZ  ->  (π `  ( |_ `  A
) )  e.  RR )
1615adantr 452 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  -.  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( |_ `  A ) )  e.  RR )
1716lep1d 9942 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  -.  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( |_ `  A ) )  <_ 
( (π `  ( |_ `  A ) )  +  1 ) )
1812, 17eqbrtrd 4232 . . . 4  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  -.  ( ( |_ `  A )  +  1 )  e.  Prime )  ->  (π `  ( ( |_
`  A )  +  1 ) )  <_ 
( (π `  ( |_ `  A ) )  +  1 ) )
1911, 18pm2.61dan 767 . . 3  |-  ( ( |_ `  A )  e.  ZZ  ->  (π `  ( ( |_ `  A )  +  1 ) )  <_  (
(π `  ( |_ `  A ) )  +  1 ) )
201, 19syl 16 . 2  |-  ( A  e.  RR  ->  (π `  ( ( |_ `  A )  +  1 ) )  <_  (
(π `  ( |_ `  A ) )  +  1 ) )
21 1z 10311 . . . . 5  |-  1  e.  ZZ
22 fladdz 11227 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  ZZ )  ->  ( |_ `  ( A  +  1 ) )  =  ( ( |_ `  A )  +  1 ) )
2321, 22mpan2 653 . . . 4  |-  ( A  e.  RR  ->  ( |_ `  ( A  + 
1 ) )  =  ( ( |_ `  A )  +  1 ) )
2423fveq2d 5732 . . 3  |-  ( A  e.  RR  ->  (π `  ( |_ `  ( A  +  1 ) ) )  =  (π `  ( ( |_ `  A )  +  1 ) ) )
25 peano2re 9239 . . . 4  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
26 ppifl 20943 . . . 4  |-  ( ( A  +  1 )  e.  RR  ->  (π `  ( |_ `  ( A  +  1 ) ) )  =  (π `  ( A  +  1 ) ) )
2725, 26syl 16 . . 3  |-  ( A  e.  RR  ->  (π `  ( |_ `  ( A  +  1 ) ) )  =  (π `  ( A  +  1 ) ) )
2824, 27eqtr3d 2470 . 2  |-  ( A  e.  RR  ->  (π `  ( ( |_ `  A )  +  1 ) )  =  (π `  ( A  +  1 ) ) )
29 ppifl 20943 . . 3  |-  ( A  e.  RR  ->  (π `  ( |_ `  A
) )  =  (π `  A ) )
3029oveq1d 6096 . 2  |-  ( A  e.  RR  ->  (
(π `  ( |_ `  A ) )  +  1 )  =  ( (π `  A )  +  1 ) )
3120, 28, 303brtr3d 4241 1  |-  ( A  e.  RR  ->  (π `  ( A  +  1 ) )  <_  (
(π `  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   RRcr 8989   1c1 8991    + caddc 8993    <_ cle 9121   NN0cn0 10221   ZZcz 10282   |_cfl 11201   Primecprime 13079  πcppi 20876
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-icc 10923  df-fz 11044  df-fl 11202  df-hash 11619  df-dvds 12853  df-prm 13080  df-ppi 20882
  Copyright terms: Public domain W3C validator