MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiub Unicode version

Theorem ppiub 20459
Description: An upper bound on the Gauss prime  pi function, which counts the number of primes less than 
N. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
ppiub  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
(π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )

Proof of Theorem ppiub
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 3re 9833 . . 3  |-  3  e.  RR
21a1i 10 . 2  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
3  e.  RR )
3 simpl 443 . 2  |-  ( ( N  e.  RR  /\  0  <_  N )  ->  N  e.  RR )
4 ppicl 20385 . . . . . . . 8  |-  ( N  e.  RR  ->  (π `  N )  e.  NN0 )
54nn0red 10035 . . . . . . 7  |-  ( N  e.  RR  ->  (π `  N )  e.  RR )
65adantr 451 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  N )  e.  RR )
7 2re 9831 . . . . . 6  |-  2  e.  RR
8 resubcl 9127 . . . . . 6  |-  ( ( (π `  N )  e.  RR  /\  2  e.  RR )  ->  (
(π `  N )  - 
2 )  e.  RR )
96, 7, 8sylancl 643 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  e.  RR )
10 fzfi 11050 . . . . . . . . 9  |-  ( 4 ... ( |_ `  N ) )  e. 
Fin
11 ssrab2 3271 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  C_  ( 4 ... ( |_ `  N ) )
12 ssfi 7099 . . . . . . . . 9  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  C_  ( 4 ... ( |_ `  N ) ) )  ->  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } }  e.  Fin )
1310, 11, 12mp2an 653 . . . . . . . 8  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  e.  Fin
14 hashcl 11366 . . . . . . . 8  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  e.  Fin  ->  ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }
)  e.  NN0 )
1513, 14ax-mp 8 . . . . . . 7  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  e.  NN0
1615nn0rei 9992 . . . . . 6  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  e.  RR
1716a1i 10 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  e.  RR )
18 3nn 9894 . . . . . . 7  |-  3  e.  NN
19 nndivre 9797 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  e.  NN )  ->  ( N  /  3
)  e.  RR )
2018, 19mpan2 652 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  3 )  e.  RR )
2120adantr 451 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  /  3
)  e.  RR )
22 ppifl 20414 . . . . . . . . 9  |-  ( N  e.  RR  ->  (π `  ( |_ `  N
) )  =  (π `  N ) )
2322adantr 451 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  ( |_ `  N ) )  =  (π `  N ) )
24 ppi3 20425 . . . . . . . . 9  |-  (π `  3
)  =  2
2524a1i 10 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  3 )  =  2 )
2623, 25oveq12d 5892 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  ( |_ `  N ) )  -  (π `
 3 ) )  =  ( (π `  N
)  -  2 ) )
2718nnzi 10063 . . . . . . . . . . 11  |-  3  e.  ZZ
2827a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
3  e.  ZZ )
29 flcl 10943 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  ZZ )
3029adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  ZZ )
31 flge 10953 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  e.  ZZ )  ->  ( 3  <_  N  <->  3  <_  ( |_ `  N ) ) )
3227, 31mpan2 652 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
3  <_  N  <->  3  <_  ( |_ `  N ) ) )
3332biimpa 470 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
3  <_  ( |_ `  N ) )
34 eluz2 10252 . . . . . . . . . 10  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  <->  ( 3  e.  ZZ  /\  ( |_
`  N )  e.  ZZ  /\  3  <_ 
( |_ `  N
) ) )
3528, 30, 33, 34syl3anbrc 1136 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  ( ZZ>= ` 
3 ) )
36 ppidif 20417 . . . . . . . . 9  |-  ( ( |_ `  N )  e.  ( ZZ>= `  3
)  ->  ( (π `  ( |_ `  N
) )  -  (π `  3 ) )  =  ( # `  (
( ( 3  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ) )
3735, 36syl 15 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  ( |_ `  N ) )  -  (π `
 3 ) )  =  ( # `  (
( ( 3  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ) )
38 df-4 9822 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
3938oveq1i 5884 . . . . . . . . . 10  |-  ( 4 ... ( |_ `  N ) )  =  ( ( 3  +  1 ) ... ( |_ `  N ) )
4039ineq1i 3379 . . . . . . . . 9  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  =  ( ( ( 3  +  1 ) ... ( |_ `  N ) )  i^i  Prime )
4140fveq2i 5544 . . . . . . . 8  |-  ( # `  ( ( 4 ... ( |_ `  N
) )  i^i  Prime ) )  =  ( # `  ( ( ( 3  +  1 ) ... ( |_ `  N
) )  i^i  Prime ) )
4237, 41syl6eqr 2346 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  ( |_ `  N ) )  -  (π `
 3 ) )  =  ( # `  (
( 4 ... ( |_ `  N ) )  i^i  Prime ) ) )
4326, 42eqtr3d 2330 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  =  (
# `  ( (
4 ... ( |_ `  N ) )  i^i 
Prime ) ) )
44 dfin5 3173 . . . . . . . . 9  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  =  {
k  e.  ( 4 ... ( |_ `  N ) )  |  k  e.  Prime }
45 elfzle1 10815 . . . . . . . . . . 11  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  4  <_  k )
46 ppiublem2 20458 . . . . . . . . . . . 12  |-  ( ( k  e.  Prime  /\  4  <_  k )  ->  (
k  mod  6 )  e.  { 1 ,  5 } )
4746expcom 424 . . . . . . . . . . 11  |-  ( 4  <_  k  ->  (
k  e.  Prime  ->  ( k  mod  6 )  e.  { 1 ,  5 } ) )
4845, 47syl 15 . . . . . . . . . 10  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
k  e.  Prime  ->  ( k  mod  6 )  e.  { 1 ,  5 } ) )
4948ss2rabi 3268 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  k  e.  Prime }  C_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }
5044, 49eqsstri 3221 . . . . . . . 8  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  C_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }
51 ssdomg 6923 . . . . . . . 8  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  e.  Fin  ->  ( (
( 4 ... ( |_ `  N ) )  i^i  Prime )  C_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  ->  ( ( 4 ... ( |_ `  N ) )  i^i  Prime )  ~<_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } ) )
5213, 50, 51mp2 17 . . . . . . 7  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  ~<_  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }
53 inss1 3402 . . . . . . . . 9  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  C_  (
4 ... ( |_ `  N ) )
54 ssfi 7099 . . . . . . . . 9  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  (
( 4 ... ( |_ `  N ) )  i^i  Prime )  C_  (
4 ... ( |_ `  N ) ) )  ->  ( ( 4 ... ( |_ `  N ) )  i^i 
Prime )  e.  Fin )
5510, 53, 54mp2an 653 . . . . . . . 8  |-  ( ( 4 ... ( |_
`  N ) )  i^i  Prime )  e.  Fin
56 hashdom 11377 . . . . . . . 8  |-  ( ( ( ( 4 ... ( |_ `  N
) )  i^i  Prime )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }  e.  Fin )  ->  (
( # `  ( ( 4 ... ( |_
`  N ) )  i^i  Prime ) )  <_ 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  <-> 
( ( 4 ... ( |_ `  N
) )  i^i  Prime )  ~<_  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } ) )
5755, 13, 56mp2an 653 . . . . . . 7  |-  ( (
# `  ( (
4 ... ( |_ `  N ) )  i^i 
Prime ) )  <_  ( # `
 { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  <->  ( (
4 ... ( |_ `  N ) )  i^i 
Prime )  ~<_  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )
5852, 57mpbir 200 . . . . . 6  |-  ( # `  ( ( 4 ... ( |_ `  N
) )  i^i  Prime ) )  <_  ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  e.  { 1 ,  5 } }
)
5943, 58syl6eqbr 4076 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  <_  ( # `
 { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } ) )
60 reflcl 10944 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( |_ `  N )  e.  RR )
6160adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  RR )
62 peano2rem 9129 . . . . . . . . . 10  |-  ( ( |_ `  N )  e.  RR  ->  (
( |_ `  N
)  -  1 )  e.  RR )
6361, 62syl 15 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  1 )  e.  RR )
64 6nn 9897 . . . . . . . . 9  |-  6  e.  NN
65 nndivre 9797 . . . . . . . . 9  |-  ( ( ( ( |_ `  N )  -  1 )  e.  RR  /\  6  e.  NN )  ->  ( ( ( |_
`  N )  - 
1 )  /  6
)  e.  RR )
6663, 64, 65sylancl 643 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
1 )  /  6
)  e.  RR )
67 reflcl 10944 . . . . . . . 8  |-  ( ( ( ( |_ `  N )  -  1 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  e.  RR )
6866, 67syl 15 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  e.  RR )
69 5re 9837 . . . . . . . . . . 11  |-  5  e.  RR
70 resubcl 9127 . . . . . . . . . . 11  |-  ( ( ( |_ `  N
)  e.  RR  /\  5  e.  RR )  ->  ( ( |_ `  N )  -  5 )  e.  RR )
7161, 69, 70sylancl 643 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  5 )  e.  RR )
72 nndivre 9797 . . . . . . . . . 10  |-  ( ( ( ( |_ `  N )  -  5 )  e.  RR  /\  6  e.  NN )  ->  ( ( ( |_
`  N )  - 
5 )  /  6
)  e.  RR )
7371, 64, 72sylancl 643 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
5 )  /  6
)  e.  RR )
74 reflcl 10944 . . . . . . . . 9  |-  ( ( ( ( |_ `  N )  -  5 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  e.  RR )
7573, 74syl 15 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  RR )
76 peano2re 9001 . . . . . . . 8  |-  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  e.  RR  ->  (
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  +  1 )  e.  RR )
7775, 76syl 15 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  +  1 )  e.  RR )
78 peano2rem 9129 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
7978adantr 451 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  1 )  e.  RR )
80 nndivre 9797 . . . . . . . 8  |-  ( ( ( N  -  1 )  e.  RR  /\  6  e.  NN )  ->  ( ( N  - 
1 )  /  6
)  e.  RR )
8179, 64, 80sylancl 643 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
1 )  /  6
)  e.  RR )
82 simpl 443 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  ->  N  e.  RR )
83 resubcl 9127 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  5  e.  RR )  ->  ( N  -  5 )  e.  RR )
8482, 69, 83sylancl 643 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  5 )  e.  RR )
85 nndivre 9797 . . . . . . . . 9  |-  ( ( ( N  -  5 )  e.  RR  /\  6  e.  NN )  ->  ( ( N  - 
5 )  /  6
)  e.  RR )
8684, 64, 85sylancl 643 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
5 )  /  6
)  e.  RR )
87 peano2re 9001 . . . . . . . 8  |-  ( ( ( N  -  5 )  /  6 )  e.  RR  ->  (
( ( N  - 
5 )  /  6
)  +  1 )  e.  RR )
8886, 87syl 15 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  -  5 )  / 
6 )  +  1 )  e.  RR )
89 flle 10947 . . . . . . . . 9  |-  ( ( ( ( |_ `  N )  -  1 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  <_ 
( ( ( |_
`  N )  - 
1 )  /  6
) )
9066, 89syl 15 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  <_  ( (
( |_ `  N
)  -  1 )  /  6 ) )
91 1re 8853 . . . . . . . . . . 11  |-  1  e.  RR
9291a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
1  e.  RR )
93 flle 10947 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( |_ `  N )  <_  N )
9493adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  <_  N )
9561, 82, 92, 94lesub1dd 9404 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  1 )  <_  ( N  -  1 ) )
96 6re 9838 . . . . . . . . . . 11  |-  6  e.  RR
9796a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
6  e.  RR )
98 6pos 9850 . . . . . . . . . . 11  |-  0  <  6
9998a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
0  <  6 )
100 lediv1 9637 . . . . . . . . . 10  |-  ( ( ( ( |_ `  N )  -  1 )  e.  RR  /\  ( N  -  1
)  e.  RR  /\  ( 6  e.  RR  /\  0  <  6 ) )  ->  ( (
( |_ `  N
)  -  1 )  <_  ( N  - 
1 )  <->  ( (
( |_ `  N
)  -  1 )  /  6 )  <_ 
( ( N  - 
1 )  /  6
) ) )
10163, 79, 97, 99, 100syl112anc 1186 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
1 )  <_  ( N  -  1 )  <-> 
( ( ( |_
`  N )  - 
1 )  /  6
)  <_  ( ( N  -  1 )  /  6 ) ) )
10295, 101mpbid 201 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
1 )  /  6
)  <_  ( ( N  -  1 )  /  6 ) )
10368, 66, 81, 90, 102letrd 8989 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  <_  ( ( N  -  1 )  /  6 ) )
104 flle 10947 . . . . . . . . . 10  |-  ( ( ( ( |_ `  N )  -  5 )  /  6 )  e.  RR  ->  ( |_ `  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  <_ 
( ( ( |_
`  N )  - 
5 )  /  6
) )
10573, 104syl 15 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  <_  ( (
( |_ `  N
)  -  5 )  /  6 ) )
10669a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
5  e.  RR )
10761, 82, 106, 94lesub1dd 9404 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  N )  -  5 )  <_  ( N  -  5 ) )
108 lediv1 9637 . . . . . . . . . . 11  |-  ( ( ( ( |_ `  N )  -  5 )  e.  RR  /\  ( N  -  5
)  e.  RR  /\  ( 6  e.  RR  /\  0  <  6 ) )  ->  ( (
( |_ `  N
)  -  5 )  <_  ( N  - 
5 )  <->  ( (
( |_ `  N
)  -  5 )  /  6 )  <_ 
( ( N  - 
5 )  /  6
) ) )
10971, 84, 97, 99, 108syl112anc 1186 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
5 )  <_  ( N  -  5 )  <-> 
( ( ( |_
`  N )  - 
5 )  /  6
)  <_  ( ( N  -  5 )  /  6 ) ) )
110107, 109mpbid 201 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( |_
`  N )  - 
5 )  /  6
)  <_  ( ( N  -  5 )  /  6 ) )
11175, 73, 86, 105, 110letrd 8989 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  <_  ( ( N  -  5 )  /  6 ) )
11275, 86, 92, 111leadd1dd 9402 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  +  1 )  <_  ( (
( N  -  5 )  /  6 )  +  1 ) )
11368, 77, 81, 88, 103, 112le2addd 9406 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  +  ( ( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  +  1 ) )  <_  ( (
( N  -  1 )  /  6 )  +  ( ( ( N  -  5 )  /  6 )  +  1 ) ) )
114 ovex 5899 . . . . . . . . . . . . 13  |-  ( k  mod  6 )  e. 
_V
115114elpr 3671 . . . . . . . . . . . 12  |-  ( ( k  mod  6 )  e.  { 1 ,  5 }  <->  ( (
k  mod  6 )  =  1  \/  (
k  mod  6 )  =  5 ) )
116115a1i 10 . . . . . . . . . . 11  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
( k  mod  6
)  e.  { 1 ,  5 }  <->  ( (
k  mod  6 )  =  1  \/  (
k  mod  6 )  =  5 ) ) )
117116rabbiia 2791 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  =  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( ( k  mod  6 )  =  1  \/  ( k  mod  6 )  =  5 ) }
118 unrab 3452 . . . . . . . . . 10  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } )  =  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( ( k  mod  6 )  =  1  \/  ( k  mod  6 )  =  5 ) }
119117, 118eqtr4i 2319 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } }  =  ( { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )
120119fveq2i 5544 . . . . . . . 8  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  =  (
# `  ( {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } ) )
121 ssrab2 3271 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  C_  ( 4 ... ( |_ `  N ) )
122 ssfi 7099 . . . . . . . . . 10  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } 
C_  ( 4 ... ( |_ `  N
) ) )  ->  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  e.  Fin )
12310, 121, 122mp2an 653 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  e.  Fin
124 ssrab2 3271 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 }  C_  ( 4 ... ( |_ `  N ) )
125 ssfi 7099 . . . . . . . . . 10  |-  ( ( ( 4 ... ( |_ `  N ) )  e.  Fin  /\  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  5 } 
C_  ( 4 ... ( |_ `  N
) ) )  ->  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 }  e.  Fin )
12610, 124, 125mp2an 653 . . . . . . . . 9  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 }  e.  Fin
127 inrab 3453 . . . . . . . . . 10  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  i^i  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } )  =  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) }
128 rabeq0 3489 . . . . . . . . . . 11  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) }  =  (/)  <->  A. k  e.  ( 4 ... ( |_ `  N ) )  -.  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) )
129 1lt5 9911 . . . . . . . . . . . . . 14  |-  1  <  5
13091, 129ltneii 8947 . . . . . . . . . . . . 13  |-  1  =/=  5
131 eqtr2 2314 . . . . . . . . . . . . . 14  |-  ( ( ( k  mod  6
)  =  1  /\  ( k  mod  6
)  =  5 )  ->  1  =  5 )
132131necon3ai 2499 . . . . . . . . . . . . 13  |-  ( 1  =/=  5  ->  -.  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) )
133130, 132ax-mp 8 . . . . . . . . . . . 12  |-  -.  (
( k  mod  6
)  =  1  /\  ( k  mod  6
)  =  5 )
134133a1i 10 . . . . . . . . . . 11  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  -.  ( ( k  mod  6 )  =  1  /\  ( k  mod  6 )  =  5 ) )
135128, 134mprgbir 2626 . . . . . . . . . 10  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( ( k  mod  6
)  =  1  /\  ( k  mod  6
)  =  5 ) }  =  (/)
136127, 135eqtri 2316 . . . . . . . . 9  |-  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 }  i^i  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } )  =  (/)
137 hashun 11380 . . . . . . . . 9  |-  ( ( { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  e.  Fin  /\  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  5 }  e.  Fin  /\  ( { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 }  i^i  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )  =  (/) )  ->  ( # `
 ( { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  5 } ) )  =  ( ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } )  +  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } ) ) )
138123, 126, 136, 137mp3an 1277 . . . . . . . 8  |-  ( # `  ( { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  1 }  u.  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } ) )  =  ( (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  1 } )  +  (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6 )  =  5 } ) )
139120, 138eqtri 2316 . . . . . . 7  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  e.  {
1 ,  5 } } )  =  ( ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } )  +  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } ) )
140 elfzelz 10814 . . . . . . . . . . . . 13  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  k  e.  ZZ )
141 nnrp 10379 . . . . . . . . . . . . . . . . 17  |-  ( 6  e.  NN  ->  6  e.  RR+ )
14264, 141ax-mp 8 . . . . . . . . . . . . . . . 16  |-  6  e.  RR+
143 0le1 9313 . . . . . . . . . . . . . . . 16  |-  0  <_  1
144 1lt6 9916 . . . . . . . . . . . . . . . 16  |-  1  <  6
145 modid 11009 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  e.  RR  /\  6  e.  RR+ )  /\  ( 0  <_  1  /\  1  <  6
) )  ->  (
1  mod  6 )  =  1 )
14691, 142, 143, 144, 145mp4an 654 . . . . . . . . . . . . . . 15  |-  ( 1  mod  6 )  =  1
147146eqeq2i 2306 . . . . . . . . . . . . . 14  |-  ( ( k  mod  6 )  =  ( 1  mod  6 )  <->  ( k  mod  6 )  =  1 )
148 1z 10069 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
149 moddvds 12554 . . . . . . . . . . . . . . 15  |-  ( ( 6  e.  NN  /\  k  e.  ZZ  /\  1  e.  ZZ )  ->  (
( k  mod  6
)  =  ( 1  mod  6 )  <->  6  ||  ( k  -  1 ) ) )
15064, 148, 149mp3an13 1268 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  ( 1  mod  6 )  <->  6  ||  ( k  -  1 ) ) )
151147, 150syl5bbr 250 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  1  <->  6 
||  ( k  - 
1 ) ) )
152140, 151syl 15 . . . . . . . . . . . 12  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
( k  mod  6
)  =  1  <->  6 
||  ( k  - 
1 ) ) )
153152rabbiia 2791 . . . . . . . . . . 11  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 }  =  { k  e.  ( 4 ... ( |_
`  N ) )  |  6  ||  (
k  -  1 ) }
154153fveq2i 5544 . . . . . . . . . 10  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  1 } )  =  (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  6  ||  (
k  -  1 ) } )
15564a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
6  e.  NN )
156 4nn 9895 . . . . . . . . . . . . 13  |-  4  e.  NN
157156nnzi 10063 . . . . . . . . . . . 12  |-  4  e.  ZZ
158157a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
4  e.  ZZ )
15938oveq1i 5884 . . . . . . . . . . . . . 14  |-  ( 4  -  1 )  =  ( ( 3  +  1 )  -  1 )
160 3cn 9834 . . . . . . . . . . . . . . 15  |-  3  e.  CC
161 ax-1cn 8811 . . . . . . . . . . . . . . 15  |-  1  e.  CC
162 pncan 9073 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  1  e.  CC )  ->  ( ( 3  +  1 )  -  1 )  =  3 )
163160, 161, 162mp2an 653 . . . . . . . . . . . . . 14  |-  ( ( 3  +  1 )  -  1 )  =  3
164159, 163eqtri 2316 . . . . . . . . . . . . 13  |-  ( 4  -  1 )  =  3
165164fveq2i 5544 . . . . . . . . . . . 12  |-  ( ZZ>= `  ( 4  -  1 ) )  =  (
ZZ>= `  3 )
16635, 165syl6eleqr 2387 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  N
)  e.  ( ZZ>= `  ( 4  -  1 ) ) )
167148a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
1  e.  ZZ )
168155, 158, 166, 167hashdvds 12859 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  6 
||  ( k  - 
1 ) } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  1 )  /  6 ) ) ) )
169154, 168syl5eq 2340 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  1 )  /  6 ) ) ) )
170 df-3 9821 . . . . . . . . . . . . . . . . 17  |-  3  =  ( 2  +  1 )
171164, 170eqtri 2316 . . . . . . . . . . . . . . . 16  |-  ( 4  -  1 )  =  ( 2  +  1 )
172171oveq1i 5884 . . . . . . . . . . . . . . 15  |-  ( ( 4  -  1 )  -  1 )  =  ( ( 2  +  1 )  -  1 )
173 2cn 9832 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
174 pncan 9073 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  1  e.  CC )  ->  ( ( 2  +  1 )  -  1 )  =  2 )
175173, 161, 174mp2an 653 . . . . . . . . . . . . . . 15  |-  ( ( 2  +  1 )  -  1 )  =  2
176172, 175eqtri 2316 . . . . . . . . . . . . . 14  |-  ( ( 4  -  1 )  -  1 )  =  2
177176oveq1i 5884 . . . . . . . . . . . . 13  |-  ( ( ( 4  -  1 )  -  1 )  /  6 )  =  ( 2  /  6
)
178177fveq2i 5544 . . . . . . . . . . . 12  |-  ( |_
`  ( ( ( 4  -  1 )  -  1 )  / 
6 ) )  =  ( |_ `  (
2  /  6 ) )
179 0re 8854 . . . . . . . . . . . . . 14  |-  0  e.  RR
18064nnne0i 9796 . . . . . . . . . . . . . . 15  |-  6  =/=  0
1817, 96, 180redivcli 9543 . . . . . . . . . . . . . 14  |-  ( 2  /  6 )  e.  RR
182 2nn 9893 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
183182nngt0i 9795 . . . . . . . . . . . . . . 15  |-  0  <  2
1847, 96, 183, 98divgt0ii 9690 . . . . . . . . . . . . . 14  |-  0  <  ( 2  /  6
)
185179, 181, 184ltleii 8957 . . . . . . . . . . . . 13  |-  0  <_  ( 2  /  6
)
186 2lt6 9915 . . . . . . . . . . . . . . . 16  |-  2  <  6
18764nncni 9772 . . . . . . . . . . . . . . . . 17  |-  6  e.  CC
188187mulid1i 8855 . . . . . . . . . . . . . . . 16  |-  ( 6  x.  1 )  =  6
189186, 188breqtrri 4064 . . . . . . . . . . . . . . 15  |-  2  <  ( 6  x.  1 )
19096, 98pm3.2i 441 . . . . . . . . . . . . . . . 16  |-  ( 6  e.  RR  /\  0  <  6 )
191 ltdivmul 9644 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  RR  /\  1  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( 2  /  6 )  <  1  <->  2  <  (
6  x.  1 ) ) )
1927, 91, 190, 191mp3an 1277 . . . . . . . . . . . . . . 15  |-  ( ( 2  /  6 )  <  1  <->  2  <  ( 6  x.  1 ) )
193189, 192mpbir 200 . . . . . . . . . . . . . 14  |-  ( 2  /  6 )  <  1
194 1e0p1 10168 . . . . . . . . . . . . . 14  |-  1  =  ( 0  +  1 )
195193, 194breqtri 4062 . . . . . . . . . . . . 13  |-  ( 2  /  6 )  < 
( 0  +  1 )
196 0z 10051 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
197 flbi 10962 . . . . . . . . . . . . . 14  |-  ( ( ( 2  /  6
)  e.  RR  /\  0  e.  ZZ )  ->  ( ( |_ `  ( 2  /  6
) )  =  0  <-> 
( 0  <_  (
2  /  6 )  /\  ( 2  / 
6 )  <  (
0  +  1 ) ) ) )
198181, 196, 197mp2an 653 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( 2  /  6 ) )  =  0  <->  ( 0  <_  ( 2  / 
6 )  /\  (
2  /  6 )  <  ( 0  +  1 ) ) )
199185, 195, 198mpbir2an 886 . . . . . . . . . . . 12  |-  ( |_
`  ( 2  / 
6 ) )  =  0
200178, 199eqtri 2316 . . . . . . . . . . 11  |-  ( |_
`  ( ( ( 4  -  1 )  -  1 )  / 
6 ) )  =  0
201200oveq2i 5885 . . . . . . . . . 10  |-  ( ( |_ `  ( ( ( |_ `  N
)  -  1 )  /  6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  - 
1 )  /  6
) ) )  =  ( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  -  0 )
20266flcld 10946 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  e.  ZZ )
203202zcnd 10134 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  1 )  /  6 ) )  e.  CC )
204203subid1d 9162 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  -  0 )  =  ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) ) )
205201, 204syl5eq 2340 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  -  ( |_ `  ( ( ( 4  -  1 )  -  1 )  / 
6 ) ) )  =  ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) ) )
206169, 205eqtrd 2328 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  1 } )  =  ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) ) )
207 5nn 9896 . . . . . . . . . . . . . . . . . 18  |-  5  e.  NN
208207nngt0i 9795 . . . . . . . . . . . . . . . . 17  |-  0  <  5
209179, 69, 208ltleii 8957 . . . . . . . . . . . . . . . 16  |-  0  <_  5
210 5lt6 9912 . . . . . . . . . . . . . . . 16  |-  5  <  6
211 modid 11009 . . . . . . . . . . . . . . . 16  |-  ( ( ( 5  e.  RR  /\  6  e.  RR+ )  /\  ( 0  <_  5  /\  5  <  6
) )  ->  (
5  mod  6 )  =  5 )
21269, 142, 209, 210, 211mp4an 654 . . . . . . . . . . . . . . 15  |-  ( 5  mod  6 )  =  5
213212eqeq2i 2306 . . . . . . . . . . . . . 14  |-  ( ( k  mod  6 )  =  ( 5  mod  6 )  <->  ( k  mod  6 )  =  5 )
214207nnzi 10063 . . . . . . . . . . . . . . 15  |-  5  e.  ZZ
215 moddvds 12554 . . . . . . . . . . . . . . 15  |-  ( ( 6  e.  NN  /\  k  e.  ZZ  /\  5  e.  ZZ )  ->  (
( k  mod  6
)  =  ( 5  mod  6 )  <->  6  ||  ( k  -  5 ) ) )
21664, 214, 215mp3an13 1268 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  ( 5  mod  6 )  <->  6  ||  ( k  -  5 ) ) )
217213, 216syl5bbr 250 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
( k  mod  6
)  =  5  <->  6 
||  ( k  - 
5 ) ) )
218140, 217syl 15 . . . . . . . . . . . 12  |-  ( k  e.  ( 4 ... ( |_ `  N
) )  ->  (
( k  mod  6
)  =  5  <->  6 
||  ( k  - 
5 ) ) )
219218rabbiia 2791 . . . . . . . . . . 11  |-  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 }  =  { k  e.  ( 4 ... ( |_
`  N ) )  |  6  ||  (
k  -  5 ) }
220219fveq2i 5544 . . . . . . . . . 10  |-  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } )  =  (
# `  { k  e.  ( 4 ... ( |_ `  N ) )  |  6  ||  (
k  -  5 ) } )
221214a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
5  e.  ZZ )
222155, 158, 166, 221hashdvds 12859 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  6 
||  ( k  - 
5 ) } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  5 )  /  6 ) ) ) )
223220, 222syl5eq 2340 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  -  5 )  /  6 ) ) ) )
224164oveq1i 5884 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  1 )  -  5 )  =  ( 3  -  5 )
225207nncni 9772 . . . . . . . . . . . . . . . . 17  |-  5  e.  CC
226225, 160negsubdi2i 9148 . . . . . . . . . . . . . . . 16  |-  -u (
5  -  3 )  =  ( 3  -  5 )
227 3p2e5 9871 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  +  2 )  =  5
228227oveq1i 5884 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  +  2 )  -  3 )  =  ( 5  -  3 )
229 pncan2 9074 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  e.  CC  /\  2  e.  CC )  ->  ( ( 3  +  2 )  -  3 )  =  2 )
230160, 173, 229mp2an 653 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  +  2 )  -  3 )  =  2
231228, 230eqtr3i 2318 . . . . . . . . . . . . . . . . 17  |-  ( 5  -  3 )  =  2
232231negeqi 9061 . . . . . . . . . . . . . . . 16  |-  -u (
5  -  3 )  =  -u 2
233224, 226, 2323eqtr2i 2322 . . . . . . . . . . . . . . 15  |-  ( ( 4  -  1 )  -  5 )  = 
-u 2
234233oveq1i 5884 . . . . . . . . . . . . . 14  |-  ( ( ( 4  -  1 )  -  5 )  /  6 )  =  ( -u 2  / 
6 )
235 divneg 9471 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  6  e.  CC  /\  6  =/=  0 )  ->  -u (
2  /  6 )  =  ( -u 2  /  6 ) )
236173, 187, 180, 235mp3an 1277 . . . . . . . . . . . . . 14  |-  -u (
2  /  6 )  =  ( -u 2  /  6 )
237234, 236eqtr4i 2319 . . . . . . . . . . . . 13  |-  ( ( ( 4  -  1 )  -  5 )  /  6 )  = 
-u ( 2  / 
6 )
238237fveq2i 5544 . . . . . . . . . . . 12  |-  ( |_
`  ( ( ( 4  -  1 )  -  5 )  / 
6 ) )  =  ( |_ `  -u (
2  /  6 ) )
239181, 91, 193ltleii 8957 . . . . . . . . . . . . . 14  |-  ( 2  /  6 )  <_ 
1
240181, 91lenegi 9334 . . . . . . . . . . . . . 14  |-  ( ( 2  /  6 )  <_  1  <->  -u 1  <_  -u ( 2  /  6
) )
241239, 240mpbi 199 . . . . . . . . . . . . 13  |-  -u 1  <_ 
-u ( 2  / 
6 )
242179, 181ltnegi 9333 . . . . . . . . . . . . . . 15  |-  ( 0  <  ( 2  / 
6 )  <->  -u ( 2  /  6 )  <  -u 0 )
243184, 242mpbi 199 . . . . . . . . . . . . . 14  |-  -u (
2  /  6 )  <  -u 0
244 neg0 9109 . . . . . . . . . . . . . . . 16  |-  -u 0  =  0
245161negidi 9131 . . . . . . . . . . . . . . . 16  |-  ( 1  +  -u 1 )  =  0
246244, 245eqtr4i 2319 . . . . . . . . . . . . . . 15  |-  -u 0  =  ( 1  + 
-u 1 )
247 neg1cn 9829 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  CC
248247, 161addcomi 9019 . . . . . . . . . . . . . . 15  |-  ( -u
1  +  1 )  =  ( 1  + 
-u 1 )
249246, 248eqtr4i 2319 . . . . . . . . . . . . . 14  |-  -u 0  =  ( -u 1  +  1 )
250243, 249breqtri 4062 . . . . . . . . . . . . 13  |-  -u (
2  /  6 )  <  ( -u 1  +  1 )
251181renegcli 9124 . . . . . . . . . . . . . 14  |-  -u (
2  /  6 )  e.  RR
252 znegcl 10071 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
253148, 252ax-mp 8 . . . . . . . . . . . . . 14  |-  -u 1  e.  ZZ
254 flbi 10962 . . . . . . . . . . . . . 14  |-  ( (
-u ( 2  / 
6 )  e.  RR  /\  -u 1  e.  ZZ )  ->  ( ( |_
`  -u ( 2  / 
6 ) )  = 
-u 1  <->  ( -u 1  <_ 
-u ( 2  / 
6 )  /\  -u (
2  /  6 )  <  ( -u 1  +  1 ) ) ) )
255251, 253, 254mp2an 653 . . . . . . . . . . . . 13  |-  ( ( |_ `  -u (
2  /  6 ) )  =  -u 1  <->  (
-u 1  <_  -u (
2  /  6 )  /\  -u ( 2  / 
6 )  <  ( -u 1  +  1 ) ) )
256241, 250, 255mpbir2an 886 . . . . . . . . . . . 12  |-  ( |_
`  -u ( 2  / 
6 ) )  = 
-u 1
257238, 256eqtri 2316 . . . . . . . . . . 11  |-  ( |_
`  ( ( ( 4  -  1 )  -  5 )  / 
6 ) )  = 
-u 1
258257oveq2i 5885 . . . . . . . . . 10  |-  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  -  ( |_ `  ( ( ( 4  -  1 )  - 
5 )  /  6
) ) )  =  ( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  -u 1
)
25973flcld 10946 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  ZZ )
260259zcnd 10134 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  CC )
261 subneg 9112 . . . . . . . . . . 11  |-  ( ( ( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  -u 1
)  =  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  +  1 ) )
262260, 161, 261sylancl 643 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  -u 1
)  =  ( ( |_ `  ( ( ( |_ `  N
)  -  5 )  /  6 ) )  +  1 ) )
263258, 262syl5eq 2340 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  -  ( |_ `  ( ( ( 4  -  1 )  -  5 )  / 
6 ) ) )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  +  1 ) )
264223, 263eqtrd 2328 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  =  5 } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  5 )  / 
6 ) )  +  1 ) )
265206, 264oveq12d 5892 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( # `  {
k  e.  ( 4 ... ( |_ `  N ) )  |  ( k  mod  6
)  =  1 } )  +  ( # `  { k  e.  ( 4 ... ( |_
`  N ) )  |  ( k  mod  6 )  =  5 } ) )  =  ( ( |_ `  ( ( ( |_
`  N )  - 
1 )  /  6
) )  +  ( ( |_ `  (
( ( |_ `  N )  -  5 )  /  6 ) )  +  1 ) ) )
266139, 265syl5eq 2340 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  =  ( ( |_
`  ( ( ( |_ `  N )  -  1 )  / 
6 ) )  +  ( ( |_ `  ( ( ( |_
`  N )  - 
5 )  /  6
) )  +  1 ) ) )
26782recnd 8877 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  3  <_  N )  ->  N  e.  CC )
2682672timesd 9970 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( 2  x.  N
)  =  ( N  +  N ) )
269 df-6 9824 . . . . . . . . . . . . . 14  |-  6  =  ( 5  +  1 )
270225, 161addcomi 9019 . . . . . . . . . . . . . 14  |-  ( 5  +  1 )  =  ( 1  +  5 )
271269, 270eqtri 2316 . . . . . . . . . . . . 13  |-  6  =  ( 1  +  5 )
272271a1i 10 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
6  =  ( 1  +  5 ) )
273268, 272oveq12d 5892 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  -  6 )  =  ( ( N  +  N )  -  ( 1  +  5 ) ) )
274 addsub4 9106 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  CC  /\  N  e.  CC )  /\  ( 1  e.  CC  /\  5  e.  CC ) )  -> 
( ( N  +  N )  -  (
1  +  5 ) )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
275161, 225, 274mpanr12 666 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  N  e.  CC )  ->  ( ( N  +  N )  -  (
1  +  5 ) )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
276267, 267, 275syl2anc 642 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  +  N )  -  (
1  +  5 ) )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
277273, 276eqtrd 2328 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  -  6 )  =  ( ( N  -  1 )  +  ( N  - 
5 ) ) )
278277oveq1d 5889 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  - 
6 )  /  6
)  =  ( ( ( N  -  1 )  +  ( N  -  5 ) )  /  6 ) )
279 mulcl 8837 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( 2  x.  N
)  e.  CC )
280173, 267, 279sylancr 644 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( 2  x.  N
)  e.  CC )
281187, 180pm3.2i 441 . . . . . . . . . . . 12  |-  ( 6  e.  CC  /\  6  =/=  0 )
282 divsubdir 9472 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  N
)  e.  CC  /\  6  e.  CC  /\  (
6  e.  CC  /\  6  =/=  0 ) )  ->  ( ( ( 2  x.  N )  -  6 )  / 
6 )  =  ( ( ( 2  x.  N )  /  6
)  -  ( 6  /  6 ) ) )
283187, 281, 282mp3an23 1269 . . . . . . . . . . 11  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  -  6 )  /  6 )  =  ( ( ( 2  x.  N )  /  6 )  -  ( 6  /  6
) ) )
284280, 283syl 15 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  - 
6 )  /  6
)  =  ( ( ( 2  x.  N
)  /  6 )  -  ( 6  / 
6 ) ) )
285 3t2e6 9888 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  6
286160, 173mulcomi 8859 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  ( 2  x.  3 )
287285, 286eqtr3i 2318 . . . . . . . . . . . . 13  |-  6  =  ( 2  x.  3 )
288287oveq2i 5885 . . . . . . . . . . . 12  |-  ( ( 2  x.  N )  /  6 )  =  ( ( 2  x.  N )  /  (
2  x.  3 ) )
289 3ne0 9847 . . . . . . . . . . . . . . 15  |-  3  =/=  0
290160, 289pm3.2i 441 . . . . . . . . . . . . . 14  |-  ( 3  e.  CC  /\  3  =/=  0 )
291182nnne0i 9796 . . . . . . . . . . . . . . 15  |-  2  =/=  0
292173, 291pm3.2i 441 . . . . . . . . . . . . . 14  |-  ( 2  e.  CC  /\  2  =/=  0 )
293 divcan5 9478 . . . . . . . . . . . . . 14  |-  ( ( N  e.  CC  /\  ( 3  e.  CC  /\  3  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 2  x.  N )  /  (
2  x.  3 ) )  =  ( N  /  3 ) )
294290, 292, 293mp3an23 1269 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( 2  x.  N
)  /  ( 2  x.  3 ) )  =  ( N  / 
3 ) )
295267, 294syl 15 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  /  (
2  x.  3 ) )  =  ( N  /  3 ) )
296288, 295syl5eq 2340 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( 2  x.  N )  /  6
)  =  ( N  /  3 ) )
297187, 180dividi 9509 . . . . . . . . . . . 12  |-  ( 6  /  6 )  =  1
298297a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( 6  /  6
)  =  1 )
299296, 298oveq12d 5892 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  / 
6 )  -  (
6  /  6 ) )  =  ( ( N  /  3 )  -  1 ) )
300284, 299eqtrd 2328 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( 2  x.  N )  - 
6 )  /  6
)  =  ( ( N  /  3 )  -  1 ) )
30179recnd 8877 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  1 )  e.  CC )
30284recnd 8877 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  -  5 )  e.  CC )
303 divdir 9463 . . . . . . . . . . 11  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  -  5
)  e.  CC  /\  ( 6  e.  CC  /\  6  =/=  0 ) )  ->  ( (
( N  -  1 )  +  ( N  -  5 ) )  /  6 )  =  ( ( ( N  -  1 )  / 
6 )  +  ( ( N  -  5 )  /  6 ) ) )
304281, 303mp3an3 1266 . . . . . . . . . 10  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  -  5
)  e.  CC )  ->  ( ( ( N  -  1 )  +  ( N  - 
5 ) )  / 
6 )  =  ( ( ( N  - 
1 )  /  6
)  +  ( ( N  -  5 )  /  6 ) ) )
305301, 302, 304syl2anc 642 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  -  1 )  +  ( N  -  5 ) )  /  6
)  =  ( ( ( N  -  1 )  /  6 )  +  ( ( N  -  5 )  / 
6 ) ) )
306278, 300, 3053eqtr3d 2336 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  / 
3 )  -  1 )  =  ( ( ( N  -  1 )  /  6 )  +  ( ( N  -  5 )  / 
6 ) ) )
307306oveq1d 5889 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  /  3 )  - 
1 )  +  1 )  =  ( ( ( ( N  - 
1 )  /  6
)  +  ( ( N  -  5 )  /  6 ) )  +  1 ) )
30821recnd 8877 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  /  3
)  e.  CC )
309 npcan 9076 . . . . . . . 8  |-  ( ( ( N  /  3
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( N  /  3 )  - 
1 )  +  1 )  =  ( N  /  3 ) )
310308, 161, 309sylancl 643 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( N  /  3 )  - 
1 )  +  1 )  =  ( N  /  3 ) )
31181recnd 8877 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
1 )  /  6
)  e.  CC )
31286recnd 8877 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( N  - 
5 )  /  6
)  e.  CC )
313161a1i 10 . . . . . . . 8  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
1  e.  CC )
314311, 312, 313addassd 8873 . . . . . . 7  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( ( ( N  -  1 )  /  6 )  +  ( ( N  - 
5 )  /  6
) )  +  1 )  =  ( ( ( N  -  1 )  /  6 )  +  ( ( ( N  -  5 )  /  6 )  +  1 ) ) )
315307, 310, 3143eqtr3d 2336 . . . . . 6  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( N  /  3
)  =  ( ( ( N  -  1 )  /  6 )  +  ( ( ( N  -  5 )  /  6 )  +  1 ) ) )
316113, 266, 3153brtr4d 4069 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( # `  { k  e.  ( 4 ... ( |_ `  N
) )  |  ( k  mod  6 )  e.  { 1 ,  5 } } )  <_  ( N  / 
3 ) )
3179, 17, 21, 59, 316letrd 8989 . . . 4  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( (π `  N )  - 
2 )  <_  ( N  /  3 ) )
3187a1i 10 . . . . 5  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
2  e.  RR )
3196, 318, 21lesubaddd 9385 . . . 4  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
( ( (π `  N
)  -  2 )  <_  ( N  / 
3 )  <->  (π `  N
)  <_  ( ( N  /  3 )  +  2 ) ) )
320317, 319mpbid 201 . . 3  |-  ( ( N  e.  RR  /\  3  <_  N )  -> 
(π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
321320adantlr 695 . 2  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  3  <_  N )  ->  (π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
3225ad2antrr 706 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  e.  RR )
3237a1i 10 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  2  e.  RR )
32420ad2antrr 706 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  ( N  / 
3 )  e.  RR )
325 readdcl 8836 . . . 4  |-  ( ( ( N  /  3
)  e.  RR  /\  2  e.  RR )  ->  ( ( N  / 
3 )  +  2 )  e.  RR )
326324, 7, 325sylancl 643 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  ( ( N  /  3 )  +  2 )  e.  RR )
327 ppiwordi 20416 . . . . . 6  |-  ( ( N  e.  RR  /\  3  e.  RR  /\  N  <_  3 )  ->  (π `  N )  <_  (π `  3 ) )
3281, 327mp3an2 1265 . . . . 5  |-  ( ( N  e.  RR  /\  N  <_  3 )  -> 
(π `  N )  <_ 
(π `  3 ) )
329328adantlr 695 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  <_ 
(π `  3 ) )
330329, 24syl6breq 4078 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  <_ 
2 )
331 3pos 9846 . . . . . 6  |-  0  <  3
332 divge0 9641 . . . . . 6  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  0  <_  ( N  /  3 ) )
3331, 331, 332mpanr12 666 . . . . 5  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
0  <_  ( N  /  3 ) )
334333adantr 451 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  0  <_  ( N  /  3 ) )
335 addge02 9301 . . . . 5  |-  ( ( 2  e.  RR  /\  ( N  /  3
)  e.  RR )  ->  ( 0  <_ 
( N  /  3
)  <->  2  <_  (
( N  /  3
)  +  2 ) ) )
3367, 324, 335sylancr 644 . . . 4  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  ( 0  <_ 
( N  /  3
)  <->  2  <_  (
( N  /  3
)  +  2 ) ) )
337334, 336mpbid 201 . . 3  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  2  <_  (
( N  /  3
)  +  2 ) )
338322, 323, 326, 330, 337letrd 8989 . 2  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  N  <_  3 )  ->  (π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
3392, 3, 321, 338lecasei 8942 1  |-  ( ( N  e.  RR  /\  0  <_  N )  -> 
(π `  N )  <_ 
( ( N  / 
3 )  +  2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {cpr 3654   class class class wbr 4039   ` cfv 5271  (class class class)co 5874    ~<_ cdom 6877   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   4c4 9813   5c5 9814   6c6 9815   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798   |_cfl 10940    mod cmo 10989   #chash 11353    || cdivides 12547   Primecprime 12774  πcppi 20347
This theorem is referenced by:  bposlem5  20543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-icc 10679  df-fz 10799  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-prm 12775  df-ppi 20353
  Copyright terms: Public domain W3C validator