MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppival Unicode version

Theorem ppival 20367
Description: Value of the prime pi function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
ppival  |-  ( A  e.  RR  ->  (π `  A )  =  (
# `  ( (
0 [,] A )  i^i  Prime ) ) )

Proof of Theorem ppival
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 5868 . . . 4  |-  ( x  =  A  ->  (
0 [,] x )  =  ( 0 [,] A ) )
21ineq1d 3371 . . 3  |-  ( x  =  A  ->  (
( 0 [,] x
)  i^i  Prime )  =  ( ( 0 [,] A )  i^i  Prime ) )
32fveq2d 5531 . 2  |-  ( x  =  A  ->  ( # `
 ( ( 0 [,] x )  i^i 
Prime ) )  =  (
# `  ( (
0 [,] A )  i^i  Prime ) ) )
4 df-ppi 20339 . 2  |- π  =  ( x  e.  RR  |->  (
# `  ( (
0 [,] x )  i^i  Prime ) ) )
5 fvex 5541 . 2  |-  ( # `  ( ( 0 [,] A )  i^i  Prime ) )  e.  _V
63, 4, 5fvmpt 5604 1  |-  ( A  e.  RR  ->  (π `  A )  =  (
# `  ( (
0 [,] A )  i^i  Prime ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686    i^i cin 3153   ` cfv 5257  (class class class)co 5860   RRcr 8738   0cc0 8739   [,]cicc 10661   #chash 11339   Primecprime 12760  πcppi 20333
This theorem is referenced by:  ppival2  20368  ppival2g  20369  ppifl  20400  ppiwordi  20402  chtleppi  20451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-iota 5221  df-fun 5259  df-fv 5265  df-ov 5863  df-ppi 20339
  Copyright terms: Public domain W3C validator