MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppival Unicode version

Theorem ppival 20588
Description: Value of the prime pi function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
ppival  |-  ( A  e.  RR  ->  (π `  A )  =  (
# `  ( (
0 [,] A )  i^i  Prime ) ) )

Proof of Theorem ppival
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 5989 . . . 4  |-  ( x  =  A  ->  (
0 [,] x )  =  ( 0 [,] A ) )
21ineq1d 3457 . . 3  |-  ( x  =  A  ->  (
( 0 [,] x
)  i^i  Prime )  =  ( ( 0 [,] A )  i^i  Prime ) )
32fveq2d 5636 . 2  |-  ( x  =  A  ->  ( # `
 ( ( 0 [,] x )  i^i 
Prime ) )  =  (
# `  ( (
0 [,] A )  i^i  Prime ) ) )
4 df-ppi 20560 . 2  |- π  =  ( x  e.  RR  |->  (
# `  ( (
0 [,] x )  i^i  Prime ) ) )
5 fvex 5646 . 2  |-  ( # `  ( ( 0 [,] A )  i^i  Prime ) )  e.  _V
63, 4, 5fvmpt 5709 1  |-  ( A  e.  RR  ->  (π `  A )  =  (
# `  ( (
0 [,] A )  i^i  Prime ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1647    e. wcel 1715    i^i cin 3237   ` cfv 5358  (class class class)co 5981   RRcr 8883   0cc0 8884   [,]cicc 10812   #chash 11505   Primecprime 12966  πcppi 20554
This theorem is referenced by:  ppival2  20589  ppival2g  20590  ppifl  20621  ppiwordi  20623  chtleppi  20672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fv 5366  df-ov 5984  df-ppi 20560
  Copyright terms: Public domain W3C validator