MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Unicode version

Theorem prcdnq 8550
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)

Proof of Theorem prcdnq
StepHypRef Expression
1 ltrelnq 8483 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2 relxp 4747 . . . . . . 7  |-  Rel  ( Q.  X.  Q. )
3 relss 4728 . . . . . . 7  |-  (  <Q  C_  ( Q.  X.  Q. )  ->  ( Rel  ( Q.  X.  Q. )  ->  Rel  <Q  ) )
41, 2, 3mp2 19 . . . . . 6  |-  Rel  <Q
54brrelexi 4682 . . . . 5  |-  ( C 
<Q  B  ->  C  e. 
_V )
6 eleq1 2316 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
76anbi2d 687 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  e.  P.  /\  x  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
8 breq2 3967 . . . . . . . 8  |-  ( x  =  B  ->  (
y  <Q  x  <->  y  <Q  B ) )
97, 8anbi12d 694 . . . . . . 7  |-  ( x  =  B  ->  (
( ( A  e. 
P.  /\  x  e.  A )  /\  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B ) ) )
109imbi1d 310 . . . . . 6  |-  ( x  =  B  ->  (
( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A
) ) )
11 breq1 3966 . . . . . . . 8  |-  ( y  =  C  ->  (
y  <Q  B  <->  C  <Q  B ) )
1211anbi2d 687 . . . . . . 7  |-  ( y  =  C  ->  (
( ( A  e. 
P.  /\  B  e.  A )  /\  y  <Q  B )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B ) ) )
13 eleq1 2316 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  A  <->  C  e.  A ) )
1412, 13imbi12d 313 . . . . . 6  |-  ( y  =  C  ->  (
( ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) ) )
15 elnpi 8545 . . . . . . . . . . 11  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
1615simprbi 452 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )
1716r19.21bi 2612 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( A. y ( y  <Q  x  ->  y  e.  A )  /\  E. y  e.  A  x 
<Q  y ) )
1817simpld 447 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  A. y ( y 
<Q  x  ->  y  e.  A ) )
191819.21bi 1774 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
2019imp 420 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x
)  ->  y  e.  A )
2110, 14, 20vtocl2g 2798 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  _V )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
225, 21sylan2 462 . . . 4  |-  ( ( B  e.  A  /\  C  <Q  B )  -> 
( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
2322adantll 697 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) )
2423pm2.43i 45 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
)
2524ex 425 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2516   E.wrex 2517   _Vcvv 2740    C_ wss 3094    C. wpss 3095   (/)c0 3397   class class class wbr 3963    X. cxp 4624   Rel wrel 4631   Q.cnq 8407    <Q cltq 8413   P.cnp 8414
This theorem is referenced by:  prub  8551  addclprlem1  8573  mulclprlem  8576  distrlem4pr  8583  1idpr  8586  psslinpr  8588  prlem934  8590  ltaddpr  8591  ltexprlem2  8594  ltexprlem3  8595  ltexprlem6  8598  prlem936  8604  reclem2pr  8605  suplem1pr  8609
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-xp 4640  df-rel 4641  df-ltnq 8475  df-np 8538
  Copyright terms: Public domain W3C validator