MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Structured version   Unicode version

Theorem prcdnq 8863
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)

Proof of Theorem prcdnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8796 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2 relxp 4976 . . . . . . 7  |-  Rel  ( Q.  X.  Q. )
3 relss 4956 . . . . . . 7  |-  (  <Q  C_  ( Q.  X.  Q. )  ->  ( Rel  ( Q.  X.  Q. )  ->  Rel  <Q  ) )
41, 2, 3mp2 9 . . . . . 6  |-  Rel  <Q
54brrelexi 4911 . . . . 5  |-  ( C 
<Q  B  ->  C  e. 
_V )
6 eleq1 2496 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
76anbi2d 685 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  e.  P.  /\  x  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
8 breq2 4209 . . . . . . . 8  |-  ( x  =  B  ->  (
y  <Q  x  <->  y  <Q  B ) )
97, 8anbi12d 692 . . . . . . 7  |-  ( x  =  B  ->  (
( ( A  e. 
P.  /\  x  e.  A )  /\  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B ) ) )
109imbi1d 309 . . . . . 6  |-  ( x  =  B  ->  (
( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A
) ) )
11 breq1 4208 . . . . . . . 8  |-  ( y  =  C  ->  (
y  <Q  B  <->  C  <Q  B ) )
1211anbi2d 685 . . . . . . 7  |-  ( y  =  C  ->  (
( ( A  e. 
P.  /\  B  e.  A )  /\  y  <Q  B )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B ) ) )
13 eleq1 2496 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  A  <->  C  e.  A ) )
1412, 13imbi12d 312 . . . . . 6  |-  ( y  =  C  ->  (
( ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) ) )
15 elnpi 8858 . . . . . . . . . . 11  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
1615simprbi 451 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )
1716r19.21bi 2797 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( A. y ( y  <Q  x  ->  y  e.  A )  /\  E. y  e.  A  x 
<Q  y ) )
1817simpld 446 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  A. y ( y 
<Q  x  ->  y  e.  A ) )
191819.21bi 1774 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
2019imp 419 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x
)  ->  y  e.  A )
2110, 14, 20vtocl2g 3008 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  _V )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
225, 21sylan2 461 . . . 4  |-  ( ( B  e.  A  /\  C  <Q  B )  -> 
( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
2322adantll 695 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) )
2423pm2.43i 45 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
)
2524ex 424 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2698   E.wrex 2699   _Vcvv 2949    C_ wss 3313    C. wpss 3314   (/)c0 3621   class class class wbr 4205    X. cxp 4869   Rel wrel 4876   Q.cnq 8720    <Q cltq 8726   P.cnp 8727
This theorem is referenced by:  prub  8864  addclprlem1  8886  mulclprlem  8889  distrlem4pr  8896  1idpr  8899  psslinpr  8901  prlem934  8903  ltaddpr  8904  ltexprlem2  8907  ltexprlem3  8908  ltexprlem6  8911  prlem936  8917  reclem2pr  8918  suplem1pr  8922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pr 4396
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-br 4206  df-opab 4260  df-xp 4877  df-rel 4878  df-ltnq 8788  df-np 8851
  Copyright terms: Public domain W3C validator