MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbas Structured version   Unicode version

Theorem prdsbas 13681
Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
Assertion
Ref Expression
prdsbas  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
Distinct variable groups:    x, B    ph, x    x, I    x, P    x, R    x, S
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem prdsbas
Dummy variables  a 
c  d  e  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2437 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 eqidd 2438 . . 3  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( R `  x ) )  = 
X_ x  e.  I 
( Base `  ( R `  x ) ) )
5 eqidd 2438 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
6 eqidd 2438 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
7 eqidd 2438 . . 3  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) )
8 eqidd 2438 . . 3  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
9 eqidd 2438 . . 3  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  X_ x  e.  I  ( Base `  ( R `  x )
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) } )
10 eqidd 2438 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
11 eqidd 2438 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) )  =  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
12 eqidd 2438 . . 3  |-  ( ph  ->  ( a  e.  (
X_ x  e.  I 
( Base `  ( R `  x ) )  X.  X_ x  e.  I 
( Base `  ( R `  x ) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x ) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) ( 2nd `  a ) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x ) )  X.  X_ x  e.  I 
( Base `  ( R `  x ) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x ) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) ( 2nd `  a ) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
13 prdsbas.s . . 3  |-  ( ph  ->  S  e.  V )
14 prdsbas.r . . 3  |-  ( ph  ->  R  e.  W )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14prdsval 13679 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  R
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) >. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x )
)  X.  X_ x  e.  I  ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  X_ x  e.  I  (
( f `  x
) (  Hom  `  ( R `  x )
) ( g `  x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
16 prdsbas.b . 2  |-  B  =  ( Base `  P
)
17 baseid 13512 . 2  |-  Base  = Slot  ( Base `  ndx )
1817strfvss 13488 . . . . . . 7  |-  ( Base `  ( R `  x
) )  C_  U. ran  ( R `  x )
19 fvssunirn 5755 . . . . . . . 8  |-  ( R `
 x )  C_  U.
ran  R
20 rnss 5099 . . . . . . . 8  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
21 uniss 4037 . . . . . . . 8  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
2219, 20, 21mp2b 10 . . . . . . 7  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
2318, 22sstri 3358 . . . . . 6  |-  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R
2423rgenw 2774 . . . . 5  |-  A. x  e.  I  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R
25 iunss 4133 . . . . 5  |-  ( U_ x  e.  I  ( Base `  ( R `  x ) )  C_  U.
ran  U. ran  R  <->  A. x  e.  I  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R )
2624, 25mpbir 202 . . . 4  |-  U_ x  e.  I  ( Base `  ( R `  x
) )  C_  U. ran  U.
ran  R
27 rnexg 5132 . . . . . 6  |-  ( R  e.  W  ->  ran  R  e.  _V )
28 uniexg 4707 . . . . . 6  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
2914, 27, 283syl 19 . . . . 5  |-  ( ph  ->  U. ran  R  e. 
_V )
30 rnexg 5132 . . . . 5  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
31 uniexg 4707 . . . . 5  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
3229, 30, 313syl 19 . . . 4  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
33 ssexg 4350 . . . 4  |-  ( (
U_ x  e.  I 
( Base `  ( R `  x ) )  C_  U.
ran  U. ran  R  /\  U.
ran  U. ran  R  e. 
_V )  ->  U_ x  e.  I  ( Base `  ( R `  x
) )  e.  _V )
3426, 32, 33sylancr 646 . . 3  |-  ( ph  ->  U_ x  e.  I 
( Base `  ( R `  x ) )  e. 
_V )
35 ixpssmap2g 7092 . . 3  |-  ( U_ x  e.  I  ( Base `  ( R `  x ) )  e. 
_V  ->  X_ x  e.  I 
( Base `  ( R `  x ) )  C_  ( U_ x  e.  I 
( Base `  ( R `  x ) )  ^m  I ) )
36 ovex 6107 . . . 4  |-  ( U_ x  e.  I  ( Base `  ( R `  x ) )  ^m  I )  e.  _V
3736ssex 4348 . . 3  |-  ( X_ x  e.  I  ( Base `  ( R `  x ) )  C_  ( U_ x  e.  I 
( Base `  ( R `  x ) )  ^m  I )  ->  X_ x  e.  I  ( Base `  ( R `  x
) )  e.  _V )
3834, 35, 373syl 19 . 2  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( R `  x ) )  e. 
_V )
39 snsstp1 3950 . . . 4  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. }  C_  { <. ( Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }
40 ssun1 3511 . . . 4  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. } )
4139, 40sstri 3358 . . 3  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. }  C_  ( { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. } )
42 ssun1 3511 . . 3  |-  ( {
<. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. } )  C_  ( ( { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  R
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) >. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x )
)  X.  X_ x  e.  I  ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  X_ x  e.  I  (
( f `  x
) (  Hom  `  ( R `  x )
) ( g `  x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
4341, 42sstri 3358 . 2  |-  { <. (
Base `  ndx ) , 
X_ x  e.  I 
( Base `  ( R `  x ) ) >. }  C_  ( ( {
<. ( Base `  ndx ) ,  X_ x  e.  I  ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  R
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  I 
( Base `  ( R `  x ) )  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) >. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  I  ( Base `  ( R `  x )
)  X.  X_ x  e.  I  ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  I  ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  I 
( Base `  ( R `  x ) )  |->  X_ x  e.  I  (
( f `  x
) (  Hom  `  ( R `  x )
) ( g `  x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  I 
( Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  I  ( Base `  ( R `  x
) )  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
4415, 16, 17, 38, 43prdsvallem 13678 1  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2706   _Vcvv 2957    u. cun 3319    C_ wss 3321   {csn 3815   {cpr 3816   {ctp 3817   <.cop 3818   U.cuni 4016   U_ciun 4094   class class class wbr 4213   {copab 4266    e. cmpt 4267    X. cxp 4877   dom cdm 4879   ran crn 4880    o. ccom 4883   ` cfv 5455  (class class class)co 6082    e. cmpt2 6084   1stc1st 6348   2ndc2nd 6349    ^m cmap 7019   X_cixp 7064   supcsup 7446   0cc0 8991   RR*cxr 9120    < clt 9121   ndxcnx 13467   Basecbs 13470   +g cplusg 13530   .rcmulr 13531  Scalarcsca 13533   .scvsca 13534  TopSetcts 13536   lecple 13537   distcds 13539    Hom chom 13541  compcco 13542   TopOpenctopn 13650   Xt_cpt 13667   X_scprds 13670
This theorem is referenced by:  prdsplusg  13682  prdsmulr  13683  prdsvsca  13684  prdsle  13685  prdsds  13687  prdstset  13689  prdshom  13690  prdsco  13691  prdsbas2  13692  pwsbas  13710  prdstps  17662  prdstotbnd  26504  dsmmval  27178
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-map 7021  df-ixp 7065  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-z 10284  df-dec 10384  df-uz 10490  df-fz 11045  df-struct 13472  df-ndx 13473  df-slot 13474  df-base 13475  df-plusg 13543  df-mulr 13544  df-sca 13546  df-vsca 13547  df-tset 13549  df-ple 13550  df-ds 13552  df-hom 13554  df-cco 13555  df-prds 13672
  Copyright terms: Public domain W3C validator