MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmulr Unicode version

Theorem prdsmulr 13375
Description: Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdsmulr.t  |-  .x.  =  ( .r `  P )
Assertion
Ref Expression
prdsmulr  |-  ( ph  ->  .x.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    .x. ( x, f, g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdsmulr
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2296 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 13373 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqid 2296 . . . 4  |-  ( +g  `  P )  =  ( +g  `  P )
91, 4, 5, 6, 3, 8prdsplusg 13374 . . 3  |-  ( ph  ->  ( +g  `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
10 eqidd 2297 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
11 eqidd 2297 . . 3  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) )
12 eqidd 2297 . . 3  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
13 eqidd 2297 . . 3  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
14 eqidd 2297 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
15 eqidd 2297 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
16 eqidd 2297 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
171, 2, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 4, 5prdsval 13371 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
18 prdsmulr.t . 2  |-  .x.  =  ( .r `  P )
19 mulrid 13270 . 2  |-  .r  = Slot  ( .r `  ndx )
20 df-ov 5877 . . . . . . . . . . . 12  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  =  ( ( .r `  ( R `  x ) ) `  <. (
f `  x ) ,  ( g `  x ) >. )
21 fvssunirn 5567 . . . . . . . . . . . 12  |-  ( ( .r `  ( R `
 x ) ) `
 <. ( f `  x ) ,  ( g `  x )
>. )  C_  U. ran  ( .r `  ( R `
 x ) )
2220, 21eqsstri 3221 . . . . . . . . . . 11  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( .r `  ( R `  x ) )
2319strfvss 13182 . . . . . . . . . . . . 13  |-  ( .r
`  ( R `  x ) )  C_  U.
ran  ( R `  x )
24 fvssunirn 5567 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
25 rnss 4923 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
26 uniss 3864 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
2724, 25, 26mp2b 9 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
2823, 27sstri 3201 . . . . . . . . . . . 12  |-  ( .r
`  ( R `  x ) )  C_  U.
ran  U. ran  R
29 rnss 4923 . . . . . . . . . . . 12  |-  ( ( .r `  ( R `
 x ) ) 
C_  U. ran  U. ran  R  ->  ran  ( .r `  ( R `  x
) )  C_  ran  U.
ran  U. ran  R )
30 uniss 3864 . . . . . . . . . . . 12  |-  ( ran  ( .r `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( .r `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R )
3128, 29, 30mp2b 9 . . . . . . . . . . 11  |-  U. ran  ( .r `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R
3222, 31sstri 3201 . . . . . . . . . 10  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
33 ovex 5899 . . . . . . . . . . 11  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  e. 
_V
3433elpw 3644 . . . . . . . . . 10  |-  ( ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R  <->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R )
3532, 34mpbir 200 . . . . . . . . 9  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R
3635a1i 10 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (
( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R )
37 eqid 2296 . . . . . . . 8  |-  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) )
3836, 37fmptd 5700 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R )
39 rnexg 4956 . . . . . . . . . . . 12  |-  ( R  e.  W  ->  ran  R  e.  _V )
40 uniexg 4533 . . . . . . . . . . . 12  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
415, 39, 403syl 18 . . . . . . . . . . 11  |-  ( ph  ->  U. ran  R  e. 
_V )
42 rnexg 4956 . . . . . . . . . . 11  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
43 uniexg 4533 . . . . . . . . . . 11  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4441, 42, 433syl 18 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
45 rnexg 4956 . . . . . . . . . 10  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
46 uniexg 4533 . . . . . . . . . 10  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
4744, 45, 463syl 18 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  U.
ran  R  e.  _V )
48 pwexg 4210 . . . . . . . . 9  |-  ( U. ran  U. ran  U. ran  R  e.  _V  ->  ~P U.
ran  U. ran  U. ran  R  e.  _V )
4947, 48syl 15 . . . . . . . 8  |-  ( ph  ->  ~P U. ran  U. ran  U. ran  R  e. 
_V )
50 dmexg 4955 . . . . . . . . . 10  |-  ( R  e.  W  ->  dom  R  e.  _V )
515, 50syl 15 . . . . . . . . 9  |-  ( ph  ->  dom  R  e.  _V )
523, 51eqeltrrd 2371 . . . . . . . 8  |-  ( ph  ->  I  e.  _V )
53 elmapg 6801 . . . . . . . 8  |-  ( ( ~P U. ran  U. ran  U. ran  R  e. 
_V  /\  I  e.  _V )  ->  ( ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5449, 52, 53syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) )  e.  ( ~P U. ran  U.
ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5538, 54mpbird 223 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
5655ralrimivw 2640 . . . . 5  |-  ( ph  ->  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
5756ralrimivw 2640 . . . 4  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
58 eqid 2296 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) )
5958fmpt2 6207 . . . 4  |-  ( A. f  e.  B  A. g  e.  B  (
x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) ) : ( B  X.  B ) --> ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
6057, 59sylib 188 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) : ( B  X.  B
) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
61 fvex 5555 . . . . . 6  |-  ( Base `  P )  e.  _V
626, 61eqeltri 2366 . . . . 5  |-  B  e. 
_V
6362, 62xpex 4817 . . . 4  |-  ( B  X.  B )  e. 
_V
64 ovex 5899 . . . 4  |-  ( ~P
U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
65 fex2 5417 . . . 4  |-  ( ( ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) : ( B  X.  B
) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  /\  ( B  X.  B
)  e.  _V  /\  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )  e.  _V )
6663, 64, 65mp3an23 1269 . . 3  |-  ( ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  ->  (
f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )  e.  _V )
6760, 66syl 15 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  e. 
_V )
68 snsstp3 3784 . . . 4  |-  { <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }
69 ssun1 3351 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }  C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )
7068, 69sstri 3201 . . 3  |-  { <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )
71 ssun1 3351 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7270, 71sstri 3201 . 2  |-  { <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7317, 18, 19, 67, 72prdsvallem 13370 1  |-  ( ph  ->  .x.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    u. cun 3163    C_ wss 3165   ~Pcpw 3638   {csn 3653   {cpr 3654   {ctp 3655   <.cop 3656   U.cuni 3843   class class class wbr 4039   {copab 4092    e. cmpt 4093    X. cxp 4703   dom cdm 4705   ran crn 4706    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137    ^m cmap 6788   X_cixp 6833   supcsup 7209   0cc0 8753   RR*cxr 8882    < clt 8883   ndxcnx 13161   Basecbs 13164   +g cplusg 13224   .rcmulr 13225  Scalarcsca 13227   .scvsca 13228  TopSetcts 13230   lecple 13231   distcds 13233    Hom chom 13235  compcco 13236   TopOpenctopn 13342   Xt_cpt 13359   X_scprds 13362
This theorem is referenced by:  prdsvsca  13376  prdsle  13377  prdsds  13379  prdstset  13381  prdshom  13382  prdsco  13383  prdsmulrval  13390  prdsmgp  15409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364
  Copyright terms: Public domain W3C validator