MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstopn Unicode version

Theorem prdstopn 17322
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y  |-  Y  =  ( S X_s R )
prdstopn.s  |-  ( ph  ->  S  e.  V )
prdstopn.i  |-  ( ph  ->  I  e.  W )
prdstopn.r  |-  ( ph  ->  R  Fn  I )
prdstopn.o  |-  O  =  ( TopOpen `  Y )
Assertion
Ref Expression
prdstopn  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )

Proof of Theorem prdstopn
Dummy variables  x  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstopn.y . . . . . 6  |-  Y  =  ( S X_s R )
2 prdstopn.s . . . . . 6  |-  ( ph  ->  S  e.  V )
3 prdstopn.r . . . . . . 7  |-  ( ph  ->  R  Fn  I )
4 prdstopn.i . . . . . . 7  |-  ( ph  ->  I  e.  W )
5 fnex 5741 . . . . . . 7  |-  ( ( R  Fn  I  /\  I  e.  W )  ->  R  e.  _V )
63, 4, 5syl2anc 642 . . . . . 6  |-  ( ph  ->  R  e.  _V )
7 eqid 2283 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  Y )
8 eqidd 2284 . . . . . 6  |-  ( ph  ->  dom  R  =  dom  R )
9 eqid 2283 . . . . . 6  |-  (TopSet `  Y )  =  (TopSet `  Y )
101, 2, 6, 7, 8, 9prdstset 13365 . . . . 5  |-  ( ph  ->  (TopSet `  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
11 topnfn 13330 . . . . . . . . . . 11  |-  TopOpen  Fn  _V
12 dffn2 5390 . . . . . . . . . . . 12  |-  ( R  Fn  I  <->  R :
I --> _V )
133, 12sylib 188 . . . . . . . . . . 11  |-  ( ph  ->  R : I --> _V )
14 fnfco 5407 . . . . . . . . . . 11  |-  ( (
TopOpen  Fn  _V  /\  R : I --> _V )  ->  ( TopOpen  o.  R )  Fn  I )
1511, 13, 14sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( TopOpen  o.  R )  Fn  I )
16 eqid 2283 . . . . . . . . . . 11  |-  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  =  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }
1716ptval 17265 . . . . . . . . . 10  |-  ( ( I  e.  W  /\  ( TopOpen  o.  R )  Fn  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  =  (
topGen `  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
184, 15, 17syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
1918unieqd 3838 . . . . . . . 8  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) )  =  U. ( topGen `  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
20 simpl2 959 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y ) )
21 eqid 2283 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
22 eqid 2283 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (TopSet `  ( R `  y ) )  =  (TopSet `  ( R `  y ) )
2321, 22topnval 13339 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (TopSet `  ( R `  y
) )t  ( Base `  ( R `  y )
) )  =  (
TopOpen `  ( R `  y ) )
24 restsspw 13336 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (TopSet `  ( R `  y
) )t  ( Base `  ( R `  y )
) )  C_  ~P ( Base `  ( R `  y ) )
2523, 24eqsstr3i 3209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TopOpen `  ( R `  y ) )  C_  ~P ( Base `  ( R `  y ) )
26 fvco2 5594 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  Fn  I  /\  y  e.  I )  ->  ( ( TopOpen  o.  R
) `  y )  =  ( TopOpen `  ( R `  y )
) )
273, 26sylan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  =  (
TopOpen `  ( R `  y ) ) )
2827sseq1d 3205 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  I )  ->  (
( ( TopOpen  o.  R
) `  y )  C_ 
~P ( Base `  ( R `  y )
)  <->  ( TopOpen `  ( R `  y )
)  C_  ~P ( Base `  ( R `  y ) ) ) )
2925, 28mpbiri 224 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  C_  ~P ( Base `  ( R `  y ) ) )
3029sseld 3179 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  I )  ->  (
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  ->  (
g `  y )  e.  ~P ( Base `  ( R `  y )
) ) )
31 fvex 5539 . . . . . . . . . . . . . . . . . . . 20  |-  ( g `
 y )  e. 
_V
3231elpw 3631 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g `  y )  e.  ~P ( Base `  ( R `  y
) )  <->  ( g `  y )  C_  ( Base `  ( R `  y ) ) )
3330, 32syl6ib 217 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  I )  ->  (
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  ->  (
g `  y )  C_  ( Base `  ( R `  y )
) ) )
3433ralimdva 2621 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  ->  A. y  e.  I  ( g `  y )  C_  ( Base `  ( R `  y ) ) ) )
3534imp 418 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y ) )  ->  A. y  e.  I 
( g `  y
)  C_  ( Base `  ( R `  y
) ) )
3620, 35sylan2 460 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  A. y  e.  I  ( g `  y )  C_  ( Base `  ( R `  y ) ) )
37 ss2ixp 6829 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  I  (
g `  y )  C_  ( Base `  ( R `  y )
)  ->  X_ y  e.  I  ( g `  y )  C_  X_ y  e.  I  ( Base `  ( R `  y
) ) )
3836, 37syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  X_ y  e.  I  ( g `  y )  C_  X_ y  e.  I  ( Base `  ( R `  y
) ) )
39 simprr 733 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  x  =  X_ y  e.  I 
( g `  y
) )
401, 7, 2, 4, 3prdsbas2 13368 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  Y
)  =  X_ y  e.  I  ( Base `  ( R `  y
) ) )
4140adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  ( Base `  Y )  = 
X_ y  e.  I 
( Base `  ( R `  y ) ) )
4238, 39, 413sstr4d 3221 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  x  C_  ( Base `  Y
) )
4342ex 423 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  C_  ( Base `  Y
) ) )
4443exlimdv 1664 . . . . . . . . . . 11  |-  ( ph  ->  ( E. g ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  C_  ( Base `  Y ) ) )
45 vex 2791 . . . . . . . . . . . 12  |-  x  e. 
_V
4645elpw 3631 . . . . . . . . . . 11  |-  ( x  e.  ~P ( Base `  Y )  <->  x  C_  ( Base `  Y ) )
4744, 46syl6ibr 218 . . . . . . . . . 10  |-  ( ph  ->  ( E. g ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  e.  ~P ( Base `  Y
) ) )
4847abssdv 3247 . . . . . . . . 9  |-  ( ph  ->  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } 
C_  ~P ( Base `  Y
) )
49 fvex 5539 . . . . . . . . . . 11  |-  ( Base `  Y )  e.  _V
5049pwex 4193 . . . . . . . . . 10  |-  ~P ( Base `  Y )  e. 
_V
5150ssex 4158 . . . . . . . . 9  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ~P ( Base `  Y )  ->  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  e.  _V )
52 unitg 16705 . . . . . . . . 9  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  e.  _V  ->  U. ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )  = 
U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
5348, 51, 523syl 18 . . . . . . . 8  |-  ( ph  ->  U. ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )  = 
U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
5419, 53eqtrd 2315 . . . . . . 7  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) )  =  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
55 sspwuni 3987 . . . . . . . 8  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ~P ( Base `  Y )  <->  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } 
C_  ( Base `  Y
) )
5648, 55sylib 188 . . . . . . 7  |-  ( ph  ->  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ( Base `  Y ) )
5754, 56eqsstrd 3212 . . . . . 6  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ( Base `  Y
) )
58 sspwuni 3987 . . . . . 6  |-  ( (
Xt_ `  ( TopOpen  o.  R
) )  C_  ~P ( Base `  Y )  <->  U. ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ( Base `  Y
) )
5957, 58sylibr 203 . . . . 5  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ~P ( Base `  Y
) )
6010, 59eqsstrd 3212 . . . 4  |-  ( ph  ->  (TopSet `  Y )  C_ 
~P ( Base `  Y
) )
617, 9topnid 13340 . . . 4  |-  ( (TopSet `  Y )  C_  ~P ( Base `  Y )  ->  (TopSet `  Y )  =  ( TopOpen `  Y
) )
6260, 61syl 15 . . 3  |-  ( ph  ->  (TopSet `  Y )  =  ( TopOpen `  Y
) )
63 prdstopn.o . . 3  |-  O  =  ( TopOpen `  Y )
6462, 63syl6eqr 2333 . 2  |-  ( ph  ->  (TopSet `  Y )  =  O )
6564, 10eqtr3d 2317 1  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   dom cdm 4689    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   X_cixp 6817   Fincfn 6863   Basecbs 13148  TopSetcts 13214   ↾t crest 13325   TopOpenctopn 13326   topGenctg 13342   Xt_cpt 13343   X_scprds 13346
This theorem is referenced by:  xpstopnlem2  17502  prdstmdd  17806  prdstgpd  17807  prdsxmslem2  18075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348
  Copyright terms: Public domain W3C validator