MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prime Structured version   Unicode version

Theorem prime 10342
Description: Two ways to express " A is a prime number (or 1)." See also isprm 13073. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Distinct variable group:    x, A

Proof of Theorem prime
StepHypRef Expression
1 bi2.04 351 . . . 4  |-  ( ( x  =/=  1  -> 
( ( A  /  x )  e.  NN  ->  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
2 impexp 434 . . . 4  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( x  =/=  1  ->  ( ( A  /  x )  e.  NN  ->  x  =  A ) ) )
3 neor 2682 . . . . 5  |-  ( ( x  =  1  \/  x  =  A )  <-> 
( x  =/=  1  ->  x  =  A ) )
43imbi2i 304 . . . 4  |-  ( ( ( A  /  x
)  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
51, 2, 43bitr4ri 270 . . 3  |-  ( ( ( A  /  x
)  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) )
6 nngt1ne1 10019 . . . . . . 7  |-  ( x  e.  NN  ->  (
1  <  x  <->  x  =/=  1 ) )
76adantl 453 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( 1  <  x  <->  x  =/=  1 ) )
87anbi1d 686 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( x  =/=  1  /\  ( A  /  x
)  e.  NN ) ) )
9 nnz 10295 . . . . . . . . 9  |-  ( ( A  /  x )  e.  NN  ->  ( A  /  x )  e.  ZZ )
10 nnre 9999 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  RR )
11 gtndiv 10339 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  A  e.  NN  /\  A  <  x )  ->  -.  ( A  /  x
)  e.  ZZ )
12113expia 1155 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
1310, 12sylan 458 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
1413con2d 109 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  -.  A  <  x
) )
15 nnre 9999 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
16 lenlt 9146 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <_  A  <->  -.  A  <  x ) )
1710, 15, 16syl2an 464 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( x  <_  A  <->  -.  A  <  x ) )
1814, 17sylibrd 226 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
1918ancoms 440 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
209, 19syl5 30 . . . . . . . 8  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  ->  x  <_  A )
)
2120pm4.71rd 617 . . . . . . 7  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  <->  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
2221anbi2d 685 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) ) )
23 3anass 940 . . . . . 6  |-  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  (
x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
2422, 23syl6bbr 255 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
258, 24bitr3d 247 . . . 4  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN ) ) )
2625imbi1d 309 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  ->  x  =  A )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
275, 26syl5bb 249 . 2  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
2827ralbidva 2713 1  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   class class class wbr 4204  (class class class)co 6073   RRcr 8981   1c1 8983    < clt 9112    <_ cle 9113    / cdiv 9669   NNcn 9992   ZZcz 10274
This theorem is referenced by:  infpnlem1  13270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-n0 10214  df-z 10275
  Copyright terms: Public domain W3C validator