HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem prime 7971
Description: Two ways to express "A is a prime number (or 1)." See also isprm 9706.
Assertion
Ref Expression
prime |- (A e. NN -> (A.x e. NN ((A / x) e. NN -> (x = 1 \/ x = A)) <-> A.x e. NN ((1 < x /\ x <_ A /\ (A / x) e. NN) -> x = A)))
Distinct variable group:   x,A

Proof of Theorem prime
StepHypRef Expression
1 bi2.04 349 . . . 4 |- ((x =/= 1 -> ((A / x) e. NN -> x = A)) <-> ((A / x) e. NN -> (x =/= 1 -> x = A)))
2 impexp 429 . . . 4 |- (((x =/= 1 /\ (A / x) e. NN) -> x = A) <-> (x =/= 1 -> ((A / x) e. NN -> x = A)))
3 neor 2130 . . . . 5 |- ((x = 1 \/ x = A) <-> (x =/= 1 -> x = A))
43imbi2i 300 . . . 4 |- (((A / x) e. NN -> (x = 1 \/ x = A)) <-> ((A / x) e. NN -> (x =/= 1 -> x = A)))
51, 2, 43bitr4ri 270 . . 3 |- (((A / x) e. NN -> (x = 1 \/ x = A)) <-> ((x =/= 1 /\ (A / x) e. NN) -> x = A))
6 nngt1ne1 7713 . . . . . . 7 |- (x e. NN -> (1 < x <-> x =/= 1))
76adantl 449 . . . . . 6 |- ((A e. NN /\ x e. NN) -> (1 < x <-> x =/= 1))
87anbi1d 684 . . . . 5 |- ((A e. NN /\ x e. NN) -> ((1 < x /\ (A / x) e. NN) <-> (x =/= 1 /\ (A / x) e. NN)))
9 nnz 7924 . . . . . . . . 9 |- ((A / x) e. NN -> (A / x) e. ZZ)
10 nnre 7696 . . . . . . . . . . . . 13 |- (x e. NN -> x e. RR)
11 gtndiv 7969 . . . . . . . . . . . . . 14 |- ((x e. RR /\ A e. NN /\ A < x) -> -. (A / x) e. ZZ)
12113expia 1128 . . . . . . . . . . . . 13 |- ((x e. RR /\ A e. NN) -> (A < x -> -. (A / x) e. ZZ))
1310, 12sylan 454 . . . . . . . . . . . 12 |- ((x e. NN /\ A e. NN) -> (A < x -> -. (A / x) e. ZZ))
1413con2d 104 . . . . . . . . . . 11 |- ((x e. NN /\ A e. NN) -> ((A / x) e. ZZ -> -. A < x))
15 nnre 7696 . . . . . . . . . . . 12 |- (A e. NN -> A e. RR)
16 lenlt 7121 . . . . . . . . . . . 12 |- ((x e. RR /\ A e. RR) -> (x <_ A <-> -. A < x))
1710, 15, 16syl2an 460 . . . . . . . . . . 11 |- ((x e. NN /\ A e. NN) -> (x <_ A <-> -. A < x))
1814, 17sylibrd 225 . . . . . . . . . 10 |- ((x e. NN /\ A e. NN) -> ((A / x) e. ZZ -> x <_ A))
1918ancoms 435 . . . . . . . . 9 |- ((A e. NN /\ x e. NN) -> ((A / x) e. ZZ -> x <_ A))
209, 19syl5 27 . . . . . . . 8 |- ((A e. NN /\ x e. NN) -> ((A / x) e. NN -> x <_ A))
2120pm4.71rd 611 . . . . . . 7 |- ((A e. NN /\ x e. NN) -> ((A / x) e. NN <-> (x <_ A /\ (A / x) e. NN)))
2221anbi2d 682 . . . . . 6 |- ((A e. NN /\ x e. NN) -> ((1 < x /\ (A / x) e. NN) <-> (1 < x /\ (x <_ A /\ (A / x) e. NN))))
23 3anass 919 . . . . . 6 |- ((1 < x /\ x <_ A /\ (A / x) e. NN) <-> (1 < x /\ (x <_ A /\ (A / x) e. NN)))
2422, 23syl6bbr 254 . . . . 5 |- ((A e. NN /\ x e. NN) -> ((1 < x /\ (A / x) e. NN) <-> (1 < x /\ x <_ A /\ (A / x) e. NN)))
258, 24bitr3d 246 . . . 4 |- ((A e. NN /\ x e. NN) -> ((x =/= 1 /\ (A / x) e. NN) <-> (1 < x /\ x <_ A /\ (A / x) e. NN)))
2625imbi1d 305 . . 3 |- ((A e. NN /\ x e. NN) -> (((x =/= 1 /\ (A / x) e. NN) -> x = A) <-> ((1 < x /\ x <_ A /\ (A / x) e. NN) -> x = A)))
275, 26syl5bb 248 . 2 |- ((A e. NN /\ x e. NN) -> (((A / x) e. NN -> (x = 1 \/ x = A)) <-> ((1 < x /\ x <_ A /\ (A / x) e. NN) -> x = A)))
2827ralbidva 2155 1 |- (A e. NN -> (A.x e. NN ((A / x) e. NN -> (x = 1 \/ x = A)) <-> A.x e. NN ((1 < x /\ x <_ A /\ (A / x) e. NN) -> x = A)))
Colors of variables: wff set class
Syntax hints:  -. wn 3   -> wi 4   <-> wb 174   \/ wo 356   /\ wa 357   /\ w3a 915   = wceq 1428   e. wcel 1430   =/= wne 2050  A.wral 2141   class class class wbr 3354  (class class class)co 4914  RRcr 6983  1c1 6985   <_ cle 7092   < clt 7096   / cdiv 7209  NNcn 7210  ZZcz 7212
This theorem is referenced by:  infpnlem1 9841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1345  ax-6 1346  ax-7 1347  ax-gen 1348  ax-8 1432  ax-10 1433  ax-11 1434  ax-12 1435  ax-13 1436  ax-14 1437  ax-17 1444  ax-9 1459  ax-4 1465  ax-16 1643  ax-ext 1914  ax-rep 3440  ax-sep 3450  ax-nul 3459  ax-pow 3495  ax-pr 3519  ax-un 3791  ax-resscn 7038  ax-1cn 7039  ax-icn 7040  ax-addcl 7041  ax-addrcl 7042  ax-mulcl 7043  ax-mulrcl 7044  ax-mulcom 7045  ax-addass 7046  ax-mulass 7047  ax-distr 7048  ax-i2m1 7049  ax-1ne0 7050  ax-1rid 7051  ax-rnegex 7052  ax-rrecex 7053  ax-cnre 7054  ax-pre-lttri 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058
This theorem depends on definitions:  df-bi 175  df-or 358  df-an 359  df-3or 916  df-3an 917  df-tru 1323  df-ex 1350  df-sb 1605  df-eu 1832  df-mo 1833  df-clab 1920  df-cleq 1925  df-clel 1928  df-ne 2052  df-nel 2053  df-ral 2145  df-rex 2146  df-reu 2147  df-rab 2148  df-v 2339  df-sbc 2504  df-csb 2579  df-dif 2639  df-un 2641  df-in 2643  df-ss 2645  df-pss 2647  df-nul 2901  df-if 3002  df-pw 3060  df-sn 3077  df-pr 3078  df-tp 3079  df-op 3080  df-uni 3210  df-iun 3282  df-br 3355  df-opab 3409  df-tr 3424  df-eprel 3604  df-id 3607  df-po 3612  df-so 3626  df-fr 3645  df-we 3661  df-ord 3677  df-on 3678  df-lim 3679  df-suc 3680  df-om 3954  df-xp 4001  df-rel 4002  df-cnv 4003  df-co 4004  df-dm 4005  df-rn 4006  df-res 4007  df-ima 4008  df-fun 4009  df-fn 4010  df-f 4011  df-f1 4012  df-fo 4013  df-f1o 4014  df-fv 4015  df-ov 4916  df-oprab 4917  df-mpt 5051  df-mpt2 5052  df-iota 5254  df-rdg 5340  df-er 5514  df-en 5659  df-dom 5660  df-sdom 5661  df-riota 5802  df-pnf 7097  df-mnf 7098  df-xr 7099  df-ltxr 7100  df-le 7101  df-sub 7226  df-neg 7228  df-div 7452  df-n 7691  df-n0 7861  df-z 7905
Copyright terms: Public domain