MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prime Unicode version

Theorem prime 9938
Description: Two ways to express " A is a prime number (or 1)." See also isprm 12596. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Distinct variable group:    x, A

Proof of Theorem prime
StepHypRef Expression
1 bi2.04 352 . . . 4  |-  ( ( x  =/=  1  -> 
( ( A  /  x )  e.  NN  ->  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
2 impexp 435 . . . 4  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( x  =/=  1  ->  ( ( A  /  x )  e.  NN  ->  x  =  A ) ) )
3 neor 2494 . . . . 5  |-  ( ( x  =  1  \/  x  =  A )  <-> 
( x  =/=  1  ->  x  =  A ) )
43imbi2i 305 . . . 4  |-  ( ( ( A  /  x
)  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
51, 2, 43bitr4ri 271 . . 3  |-  ( ( ( A  /  x
)  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) )
6 nngt1ne1 9621 . . . . . . 7  |-  ( x  e.  NN  ->  (
1  <  x  <->  x  =/=  1 ) )
76adantl 454 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( 1  <  x  <->  x  =/=  1 ) )
87anbi1d 688 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( x  =/=  1  /\  ( A  /  x
)  e.  NN ) ) )
9 nnz 9891 . . . . . . . . 9  |-  ( ( A  /  x )  e.  NN  ->  ( A  /  x )  e.  ZZ )
10 nnre 9601 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  RR )
11 gtndiv 9935 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  A  e.  NN  /\  A  <  x )  ->  -.  ( A  /  x
)  e.  ZZ )
12113expia 1158 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
1310, 12sylan 459 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
1413con2d 109 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  -.  A  <  x
) )
15 nnre 9601 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
16 lenlt 8777 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <_  A  <->  -.  A  <  x ) )
1710, 15, 16syl2an 465 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( x  <_  A  <->  -.  A  <  x ) )
1814, 17sylibrd 227 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
1918ancoms 441 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
209, 19syl5 30 . . . . . . . 8  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  ->  x  <_  A )
)
2120pm4.71rd 619 . . . . . . 7  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  <->  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
2221anbi2d 687 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) ) )
23 3anass 943 . . . . . 6  |-  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  (
x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
2422, 23syl6bbr 256 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
258, 24bitr3d 248 . . . 4  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN ) ) )
2625imbi1d 310 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  ->  x  =  A )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
275, 26syl5bb 250 . 2  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
2827ralbidva 2521 1  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2507   class class class wbr 3917  (class class class)co 5707   RRcr 8613   1c1 8615    < clt 8744    <_ cle 8745    / cdiv 9279   NNcn 9594   ZZcz 9870
This theorem is referenced by:  infpnlem1  12793
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4035  ax-nul 4043  ax-pow 4079  ax-pr 4105  ax-un 4400  ax-resscn 8671  ax-1cn 8672  ax-icn 8673  ax-addcl 8674  ax-addrcl 8675  ax-mulcl 8676  ax-mulrcl 8677  ax-mulcom 8678  ax-addass 8679  ax-mulass 8680  ax-distr 8681  ax-i2m1 8682  ax-1ne0 8683  ax-1rid 8684  ax-rnegex 8685  ax-rrecex 8686  ax-cnre 8687  ax-pre-lttri 8688  ax-pre-lttrn 8689  ax-pre-ltadd 8690  ax-pre-mulgt0 8691
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2511  df-rex 2512  df-reu 2513  df-rab 2514  df-v 2727  df-sbc 2920  df-csb 3007  df-dif 3078  df-un 3080  df-in 3082  df-ss 3086  df-pss 3088  df-nul 3360  df-if 3468  df-pw 3529  df-sn 3547  df-pr 3548  df-tp 3549  df-op 3550  df-uni 3725  df-iun 3802  df-br 3918  df-opab 3972  df-mpt 3973  df-tr 4008  df-eprel 4195  df-id 4199  df-po 4204  df-so 4205  df-fr 4242  df-we 4244  df-ord 4285  df-on 4286  df-lim 4287  df-suc 4288  df-om 4545  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-fun 4599  df-fn 4600  df-f 4601  df-f1 4602  df-fo 4603  df-f1o 4604  df-fv 4605  df-ov 5710  df-oprab 5711  df-mpt2 5712  df-iota 6140  df-riota 6187  df-recs 6271  df-rdg 6306  df-er 6543  df-en 6747  df-dom 6748  df-sdom 6749  df-pnf 8746  df-mnf 8747  df-xr 8748  df-ltxr 8749  df-le 8750  df-sub 8911  df-neg 8912  df-div 9280  df-n 9595  df-n0 9812  df-z 9871
  Copyright terms: Public domain W3C validator