MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prlem934 Structured version   Unicode version

Theorem prlem934 8902
Description: Lemma 9-3.4 of [Gleason] p. 122. (Contributed by NM, 25-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
prlem934.1  |-  B  e. 
_V
Assertion
Ref Expression
prlem934  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  B )  e.  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem prlem934
Dummy variables  b  w  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 8858 . . . . 5  |-  ( A  e.  P.  ->  A  =/=  (/) )
2 r19.2z 3709 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  (
x  +Q  B )  e.  A )  ->  E. x  e.  A  ( x  +Q  B
)  e.  A )
32ex 424 . . . . 5  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
x  +Q  B )  e.  A  ->  E. x  e.  A  ( x  +Q  B )  e.  A
) )
41, 3syl 16 . . . 4  |-  ( A  e.  P.  ->  ( A. x  e.  A  ( x  +Q  B
)  e.  A  ->  E. x  e.  A  ( x  +Q  B
)  e.  A ) )
5 prpssnq 8859 . . . . . . . . 9  |-  ( A  e.  P.  ->  A  C.  Q. )
65pssssd 3436 . . . . . . . 8  |-  ( A  e.  P.  ->  A  C_ 
Q. )
76sseld 3339 . . . . . . 7  |-  ( A  e.  P.  ->  (
( x  +Q  B
)  e.  A  -> 
( x  +Q  B
)  e.  Q. )
)
8 addnqf 8817 . . . . . . . . . 10  |-  +Q  :
( Q.  X.  Q. )
--> Q.
98fdmi 5588 . . . . . . . . 9  |-  dom  +Q  =  ( Q.  X.  Q. )
10 0nnq 8793 . . . . . . . . 9  |-  -.  (/)  e.  Q.
119, 10ndmovrcl 6225 . . . . . . . 8  |-  ( ( x  +Q  B )  e.  Q.  ->  (
x  e.  Q.  /\  B  e.  Q. )
)
1211simprd 450 . . . . . . 7  |-  ( ( x  +Q  B )  e.  Q.  ->  B  e.  Q. )
137, 12syl6com 33 . . . . . 6  |-  ( ( x  +Q  B )  e.  A  ->  ( A  e.  P.  ->  B  e.  Q. ) )
1413rexlimivw 2818 . . . . 5  |-  ( E. x  e.  A  ( x  +Q  B )  e.  A  ->  ( A  e.  P.  ->  B  e.  Q. ) )
1514com12 29 . . . 4  |-  ( A  e.  P.  ->  ( E. x  e.  A  ( x  +Q  B
)  e.  A  ->  B  e.  Q. )
)
16 oveq2 6081 . . . . . . . . . 10  |-  ( b  =  B  ->  (
x  +Q  b )  =  ( x  +Q  B ) )
1716eleq1d 2501 . . . . . . . . 9  |-  ( b  =  B  ->  (
( x  +Q  b
)  e.  A  <->  ( x  +Q  B )  e.  A
) )
1817ralbidv 2717 . . . . . . . 8  |-  ( b  =  B  ->  ( A. x  e.  A  ( x  +Q  b
)  e.  A  <->  A. x  e.  A  ( x  +Q  B )  e.  A
) )
1918notbid 286 . . . . . . 7  |-  ( b  =  B  ->  ( -.  A. x  e.  A  ( x  +Q  b
)  e.  A  <->  -.  A. x  e.  A  ( x  +Q  B )  e.  A
) )
2019imbi2d 308 . . . . . 6  |-  ( b  =  B  ->  (
( A  e.  P.  ->  -.  A. x  e.  A  ( x  +Q  b )  e.  A
)  <->  ( A  e. 
P.  ->  -.  A. x  e.  A  ( x  +Q  B )  e.  A
) ) )
21 dfpss2 3424 . . . . . . . . . . 11  |-  ( A 
C.  Q.  <->  ( A  C_  Q.  /\  -.  A  =  Q. ) )
225, 21sylib 189 . . . . . . . . . 10  |-  ( A  e.  P.  ->  ( A  C_  Q.  /\  -.  A  =  Q. )
)
2322simprd 450 . . . . . . . . 9  |-  ( A  e.  P.  ->  -.  A  =  Q. )
2423adantr 452 . . . . . . . 8  |-  ( ( A  e.  P.  /\  b  e.  Q. )  ->  -.  A  =  Q. )
2563ad2ant1 978 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  ->  A  C_  Q. )
26 simpl1 960 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  A  e.  P. )
27 n0 3629 . . . . . . . . . . . . . . 15  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
281, 27sylib 189 . . . . . . . . . . . . . 14  |-  ( A  e.  P.  ->  E. y 
y  e.  A )
2926, 28syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  E. y  y  e.  A )
30 simprl 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  w  e.  Q. )
31 simpl2 961 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  b  e.  Q. )
32 recclnq 8835 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  Q.  ->  ( *Q `  b )  e. 
Q. )
33 mulclnq 8816 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  Q.  /\  ( *Q `  b )  e.  Q. )  -> 
( w  .Q  ( *Q `  b ) )  e.  Q. )
34 archnq 8849 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  .Q  ( *Q
`  b ) )  e.  Q.  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >. )
3533, 34syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  Q.  /\  ( *Q `  b )  e.  Q. )  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. )
3632, 35sylan2 461 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  Q.  /\  b  e.  Q. )  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. )
3730, 31, 36syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >. )
38 simpll2 997 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  b  e.  Q. )
39 simplrl 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  e.  Q. )
40 simprr 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  (
w  .Q  ( *Q
`  b ) ) 
<Q  <. z ,  1o >. )
41 ltmnq 8841 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  e.  Q.  ->  (
( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >.  <-> 
( b  .Q  (
w  .Q  ( *Q
`  b ) ) )  <Q  ( b  .Q  <. z ,  1o >. ) ) )
42 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  b  e. 
_V
43 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  w  e. 
_V
44 fvex 5734 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( *Q
`  b )  e. 
_V
45 mulcomnq 8822 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .Q  x )  =  ( x  .Q  v
)
46 mulassnq 8828 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( v  .Q  x )  .Q  y )  =  ( v  .Q  (
x  .Q  y ) )
4742, 43, 44, 45, 46caov12 6267 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  .Q  ( w  .Q  ( *Q `  b ) ) )  =  ( w  .Q  ( b  .Q  ( *Q `  b ) ) )
48 mulcomnq 8822 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  .Q  <. z ,  1o >. )  =  ( <.
z ,  1o >.  .Q  b )
4947, 48breq12i 4213 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  .Q  ( w  .Q  ( *Q `  b ) ) ) 
<Q  ( b  .Q  <. z ,  1o >. )  <->  ( w  .Q  ( b  .Q  ( *Q `  b ) ) ) 
<Q  ( <. z ,  1o >.  .Q  b ) )
5041, 49syl6bb 253 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  e.  Q.  ->  (
( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >.  <-> 
( w  .Q  (
b  .Q  ( *Q
`  b ) ) )  <Q  ( <. z ,  1o >.  .Q  b
) ) )
5150adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >.  <->  ( w  .Q  ( b  .Q  ( *Q `  b ) ) )  <Q  ( <. z ,  1o >.  .Q  b
) ) )
52 recidnq 8834 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  e.  Q.  ->  (
b  .Q  ( *Q
`  b ) )  =  1Q )
5352oveq2d 6089 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  e.  Q.  ->  (
w  .Q  ( b  .Q  ( *Q `  b ) ) )  =  ( w  .Q  1Q ) )
54 mulidnq 8832 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  Q.  ->  (
w  .Q  1Q )  =  w )
5553, 54sylan9eq 2487 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( w  .Q  (
b  .Q  ( *Q
`  b ) ) )  =  w )
5655breq1d 4214 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( ( w  .Q  ( b  .Q  ( *Q `  b ) ) )  <Q  ( <. z ,  1o >.  .Q  b
)  <->  w  <Q  ( <.
z ,  1o >.  .Q  b ) ) )
5751, 56bitrd 245 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >.  <->  w  <Q  ( <.
z ,  1o >.  .Q  b ) ) )
5857biimpa 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Q.  /\  w  e.  Q. )  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. )  ->  w  <Q  (
<. z ,  1o >.  .Q  b ) )
5938, 39, 40, 58syl21anc 1183 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  <Q  ( <. z ,  1o >.  .Q  b ) )
60 simprl 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  z  e.  N. )
61 pinq 8796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  N.  ->  <. z ,  1o >.  e.  Q. )
62 mulclnq 8816 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. z ,  1o >.  e. 
Q.  /\  b  e.  Q. )  ->  ( <.
z ,  1o >.  .Q  b )  e.  Q. )
6361, 62sylan 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( <. z ,  1o >.  .Q  b )  e. 
Q. )
6460, 38, 63syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  ( <. z ,  1o >.  .Q  b )  e.  Q. )
65 simpll1 996 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  A  e.  P. )
66 simplrr 738 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  y  e.  A )
67 elprnq 8860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  y  e.  Q. )
6865, 66, 67syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  y  e.  Q. )
69 ltaddnq 8843 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( <. z ,  1o >.  .Q  b )  e. 
Q.  /\  y  e.  Q. )  ->  ( <.
z ,  1o >.  .Q  b )  <Q  (
( <. z ,  1o >.  .Q  b )  +Q  y ) )
70 addcomnq 8820 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. z ,  1o >.  .Q  b )  +Q  y
)  =  ( y  +Q  ( <. z ,  1o >.  .Q  b
) )
7169, 70syl6breq 4243 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( <. z ,  1o >.  .Q  b )  e. 
Q.  /\  y  e.  Q. )  ->  ( <.
z ,  1o >.  .Q  b )  <Q  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) ) )
7264, 68, 71syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  ( <. z ,  1o >.  .Q  b )  <Q  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) ) )
73 ltsonq 8838 . . . . . . . . . . . . . . . . . . 19  |-  <Q  Or  Q.
74 ltrelnq 8795 . . . . . . . . . . . . . . . . . . 19  |-  <Q  C_  ( Q.  X.  Q. )
7573, 74sotri 5253 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  <Q  ( <. z ,  1o >.  .Q  b
)  /\  ( <. z ,  1o >.  .Q  b
)  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) ) )  ->  w  <Q  ( y  +Q  ( <.
z ,  1o >.  .Q  b ) ) )
7659, 72, 75syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) ) )
77 simpll3 998 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  A. x  e.  A  ( x  +Q  b )  e.  A
)
78 opeq1 3976 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  =  1o  ->  <. w ,  1o >.  =  <. 1o ,  1o >. )
79 df-1nq 8785 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  1Q  =  <. 1o ,  1o >.
8078, 79syl6eqr 2485 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  1o  ->  <. w ,  1o >.  =  1Q )
8180oveq1d 6088 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  1o  ->  ( <. w ,  1o >.  .Q  b )  =  ( 1Q  .Q  b ) )
8281oveq2d 6089 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  1o  ->  (
y  +Q  ( <.
w ,  1o >.  .Q  b ) )  =  ( y  +Q  ( 1Q  .Q  b ) ) )
8382eleq1d 2501 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  1o  ->  (
( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A  <->  ( y  +Q  ( 1Q  .Q  b
) )  e.  A
) )
8483imbi2d 308 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  1o  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A )  <->  ( (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( 1Q 
.Q  b ) )  e.  A ) ) )
85 opeq1 3976 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  z  ->  <. w ,  1o >.  =  <. z ,  1o >. )
8685oveq1d 6088 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  z  ->  ( <. w ,  1o >.  .Q  b )  =  (
<. z ,  1o >.  .Q  b ) )
8786oveq2d 6089 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  z  ->  (
y  +Q  ( <.
w ,  1o >.  .Q  b ) )  =  ( y  +Q  ( <. z ,  1o >.  .Q  b ) ) )
8887eleq1d 2501 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  z  ->  (
( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A  <->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A ) )
8988imbi2d 308 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  z  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A )  <->  ( (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) )  e.  A ) ) )
90 opeq1 3976 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( z  +N  1o )  ->  <. w ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
9190oveq1d 6088 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( z  +N  1o )  ->  ( <. w ,  1o >.  .Q  b )  =  (
<. ( z  +N  1o ) ,  1o >.  .Q  b
) )
9291oveq2d 6089 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( z  +N  1o )  ->  (
y  +Q  ( <.
w ,  1o >.  .Q  b ) )  =  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) ) )
9392eleq1d 2501 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( z  +N  1o )  ->  (
( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A  <->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )  e.  A ) )
9493imbi2d 308 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  ( z  +N  1o )  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A )  <->  ( (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
95 mulcomnq 8822 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1Q 
.Q  b )  =  ( b  .Q  1Q )
96 mulidnq 8832 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  e.  Q.  ->  (
b  .Q  1Q )  =  b )
9795, 96syl5eq 2479 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  e.  Q.  ->  ( 1Q  .Q  b )  =  b )
98 oveq1 6080 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  y  ->  (
x  +Q  b )  =  ( y  +Q  b ) )
9998eleq1d 2501 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  y  ->  (
( x  +Q  b
)  e.  A  <->  ( y  +Q  b )  e.  A
) )
10099rspccva 3043 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )  ->  ( y  +Q  b
)  e.  A )
101 oveq2 6081 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1Q  .Q  b )  =  b  ->  (
y  +Q  ( 1Q 
.Q  b ) )  =  ( y  +Q  b ) )
102101eleq1d 2501 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1Q  .Q  b )  =  b  ->  (
( y  +Q  ( 1Q  .Q  b ) )  e.  A  <->  ( y  +Q  b )  e.  A
) )
103102biimpar 472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1Q  .Q  b
)  =  b  /\  ( y  +Q  b
)  e.  A )  ->  ( y  +Q  ( 1Q  .Q  b
) )  e.  A
)
10497, 100, 103syl2an 464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b  e.  Q.  /\  ( A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )
)  ->  ( y  +Q  ( 1Q  .Q  b
) )  e.  A
)
1051043impb 1149 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( 1Q 
.Q  b ) )  e.  A )
106 3simpa 954 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A ) )
107 oveq1 6080 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  ( x  +Q  b )  =  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  +Q  b ) )
108107eleq1d 2501 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  ( ( x  +Q  b )  e.  A  <->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b
) )  +Q  b
)  e.  A ) )
109108rspccva 3043 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A. x  e.  A  ( x  +Q  b
)  e.  A  /\  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  ->  (
( y  +Q  ( <. z ,  1o >.  .Q  b ) )  +Q  b )  e.  A
)
110 addassnq 8827 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  +Q  ( <.
z ,  1o >.  .Q  b ) )  +Q  b )  =  ( y  +Q  ( (
<. z ,  1o >.  .Q  b )  +Q  b
) )
111 opex 4419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  <. z ,  1o >.  e.  _V
112 1nq 8797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  1Q  e.  Q.
113112elexi 2957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  1Q  e.  _V
114 distrnq 8830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( v  .Q  ( x  +Q  y ) )  =  ( ( v  .Q  x )  +Q  (
v  .Q  y ) )
115111, 113, 42, 45, 114caovdir 6273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
<. z ,  1o >.  +Q  1Q )  .Q  b
)  =  ( (
<. z ,  1o >.  .Q  b )  +Q  ( 1Q  .Q  b ) )
116115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  +Q  1Q )  .Q  b )  =  ( ( <. z ,  1o >.  .Q  b
)  +Q  ( 1Q 
.Q  b ) ) )
117 addpqnq 8807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
<. z ,  1o >.  e. 
Q.  /\  1Q  e.  Q. )  ->  ( <.
z ,  1o >.  +Q  1Q )  =  ( /Q `  ( <.
z ,  1o >.  +pQ 
1Q ) ) )
11861, 112, 117sylancl 644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +Q  1Q )  =  ( /Q `  ( <.
z ,  1o >.  +pQ 
1Q ) ) )
11979oveq2i 6084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( <.
z ,  1o >.  +pQ 
1Q )  =  (
<. z ,  1o >.  +pQ 
<. 1o ,  1o >. )
120 1pi 8752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  1o  e.  N.
121 addpipq 8806 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( z  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( <. z ,  1o >.  +pQ  <. 1o ,  1o >. )  =  <. ( ( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
122120, 120, 121mpanr12 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( <. z ,  1o >.  +pQ  <. 1o ,  1o >. )  =  <. (
( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
123120, 122mpan2 653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +pQ 
<. 1o ,  1o >. )  =  <. ( ( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
124119, 123syl5eq 2479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +pQ 
1Q )  =  <. ( ( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
125 mulidpi 8755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
126 mulidpi 8755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
127120, 126mp1i 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( z  e.  N.  ->  ( 1o  .N  1o )  =  1o )
128125, 127oveq12d 6091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( z  e.  N.  ->  (
( z  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( z  +N  1o ) )
129128, 127opeq12d 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( z  e.  N.  ->  <. (
( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>.  =  <. ( z  +N  1o ) ,  1o >. )
130124, 129eqtrd 2467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +pQ 
1Q )  =  <. ( z  +N  1o ) ,  1o >. )
131130fveq2d 5724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  N.  ->  ( /Q `  ( <. z ,  1o >.  +pQ  1Q ) )  =  ( /Q
`  <. ( z  +N  1o ) ,  1o >. ) )
132 addclpi 8761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
133120, 132mpan2 653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( z  e.  N.  ->  (
z  +N  1o )  e.  N. )
134 pinq 8796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( z  +N  1o )  e.  N.  ->  <. (
z  +N  1o ) ,  1o >.  e.  Q. )
135 nqerid 8802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( <.
( z  +N  1o ) ,  1o >.  e.  Q.  ->  ( /Q `  <. ( z  +N  1o ) ,  1o >. )  =  <. ( z  +N  1o ) ,  1o >. )
136133, 134, 1353syl 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  N.  ->  ( /Q `  <. ( z  +N  1o ) ,  1o >. )  =  <. (
z  +N  1o ) ,  1o >. )
137118, 131, 1363eqtrd 2471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +Q  1Q )  =  <. ( z  +N  1o ) ,  1o >. )
138137adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( <. z ,  1o >.  +Q  1Q )  = 
<. ( z  +N  1o ) ,  1o >. )
139138oveq1d 6088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  +Q  1Q )  .Q  b )  =  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )
14097adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( 1Q  .Q  b
)  =  b )
141140oveq2d 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  .Q  b
)  +Q  ( 1Q 
.Q  b ) )  =  ( ( <.
z ,  1o >.  .Q  b )  +Q  b
) )
142116, 139, 1413eqtr3rd 2476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  .Q  b
)  +Q  b )  =  ( <. (
z  +N  1o ) ,  1o >.  .Q  b
) )
143142oveq2d 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( y  +Q  (
( <. z ,  1o >.  .Q  b )  +Q  b ) )  =  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) ) )
144110, 143syl5eq 2479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  +Q  b )  =  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) ) )
145144eleq1d 2501 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( ( y  +Q  ( <. z ,  1o >.  .Q  b
) )  +Q  b
)  e.  A  <->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )  e.  A ) )
146109, 145syl5ib 211 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( A. x  e.  A  ( x  +Q  b )  e.  A  /\  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) )
147146exp3a 426 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( A. x  e.  A  ( x  +Q  b )  e.  A  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
148147expimpd 587 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  N.  ->  (
( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A )  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b
) )  e.  A  ->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
149106, 148syl5 30 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  N.  ->  (
( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
150149a2d 24 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  N.  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  -> 
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )  e.  A ) ) )
15184, 89, 94, 89, 105, 150indpi 8776 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  N.  ->  (
( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )  ->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A ) )
152151imp 419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  N.  /\  ( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )
)  ->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )
15360, 38, 77, 66, 152syl13anc 1186 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) )  e.  A )
154 prcdnq 8862 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  ->  (
w  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  w  e.  A
) )
15565, 153, 154syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  (
w  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  w  e.  A
) )
15676, 155mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  e.  A )
15737, 156rexlimddv 2826 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  w  e.  A )
158157expr 599 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  ( y  e.  A  ->  w  e.  A ) )
159158exlimdv 1646 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  ( E. y  y  e.  A  ->  w  e.  A ) )
16029, 159mpd 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  w  e.  A )
161160ex 424 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  -> 
( w  e.  Q.  ->  w  e.  A ) )
162161ssrdv 3346 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  ->  Q.  C_  A )
16325, 162eqssd 3357 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  ->  A  =  Q. )
1641633expia 1155 . . . . . . . 8  |-  ( ( A  e.  P.  /\  b  e.  Q. )  ->  ( A. x  e.  A  ( x  +Q  b )  e.  A  ->  A  =  Q. )
)
16524, 164mtod 170 . . . . . . 7  |-  ( ( A  e.  P.  /\  b  e.  Q. )  ->  -.  A. x  e.  A  ( x  +Q  b )  e.  A
)
166165expcom 425 . . . . . 6  |-  ( b  e.  Q.  ->  ( A  e.  P.  ->  -. 
A. x  e.  A  ( x  +Q  b
)  e.  A ) )
16720, 166vtoclga 3009 . . . . 5  |-  ( B  e.  Q.  ->  ( A  e.  P.  ->  -. 
A. x  e.  A  ( x  +Q  B
)  e.  A ) )
168167com12 29 . . . 4  |-  ( A  e.  P.  ->  ( B  e.  Q.  ->  -. 
A. x  e.  A  ( x  +Q  B
)  e.  A ) )
1694, 15, 1683syld 53 . . 3  |-  ( A  e.  P.  ->  ( A. x  e.  A  ( x  +Q  B
)  e.  A  ->  -.  A. x  e.  A  ( x  +Q  B
)  e.  A ) )
170169pm2.01d 163 . 2  |-  ( A  e.  P.  ->  -.  A. x  e.  A  ( x  +Q  B )  e.  A )
171 rexnal 2708 . 2  |-  ( E. x  e.  A  -.  ( x  +Q  B
)  e.  A  <->  -.  A. x  e.  A  ( x  +Q  B )  e.  A
)
172170, 171sylibr 204 1  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  B )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312    C. wpss 3313   (/)c0 3620   <.cop 3809   class class class wbr 4204    X. cxp 4868   ` cfv 5446  (class class class)co 6073   1oc1o 6709   N.cnpi 8711    +N cpli 8712    .N cmi 8713    +pQ cplpq 8715   Q.cnq 8719   1Qc1q 8720   /Qcerq 8721    +Q cplq 8722    .Q cmq 8723   *Qcrq 8724    <Q cltq 8725   P.cnp 8726
This theorem is referenced by:  ltaddpr  8903  ltexprlem7  8911  prlem936  8916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ni 8741  df-pli 8742  df-mi 8743  df-lti 8744  df-plpq 8777  df-mpq 8778  df-ltpq 8779  df-enq 8780  df-nq 8781  df-erq 8782  df-plq 8783  df-mq 8784  df-1nq 8785  df-rq 8786  df-ltnq 8787  df-np 8850
  Copyright terms: Public domain W3C validator