MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prlem936 Structured version   Unicode version

Theorem prlem936 8916
Description: Lemma 9-3.6 of [Gleason] p. 124. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prlem936  |-  ( ( A  e.  P.  /\  1Q  <Q  B )  ->  E. x  e.  A  -.  ( x  .Q  B
)  e.  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem prlem936
Dummy variables  y 
z  b  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8795 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4918 . . . 4  |-  ( 1Q 
<Q  B  ->  ( 1Q  e.  Q.  /\  B  e.  Q. ) )
32simprd 450 . . 3  |-  ( 1Q 
<Q  B  ->  B  e. 
Q. )
43adantl 453 . 2  |-  ( ( A  e.  P.  /\  1Q  <Q  B )  ->  B  e.  Q. )
5 breq2 4208 . . . . 5  |-  ( b  =  B  ->  ( 1Q  <Q  b  <->  1Q  <Q  B ) )
65anbi2d 685 . . . 4  |-  ( b  =  B  ->  (
( A  e.  P.  /\  1Q  <Q  b )  <->  ( A  e.  P.  /\  1Q  <Q  B ) ) )
7 oveq2 6081 . . . . . . 7  |-  ( b  =  B  ->  (
x  .Q  b )  =  ( x  .Q  B ) )
87eleq1d 2501 . . . . . 6  |-  ( b  =  B  ->  (
( x  .Q  b
)  e.  A  <->  ( x  .Q  B )  e.  A
) )
98notbid 286 . . . . 5  |-  ( b  =  B  ->  ( -.  ( x  .Q  b
)  e.  A  <->  -.  (
x  .Q  B )  e.  A ) )
109rexbidv 2718 . . . 4  |-  ( b  =  B  ->  ( E. x  e.  A  -.  ( x  .Q  b
)  e.  A  <->  E. x  e.  A  -.  (
x  .Q  B )  e.  A ) )
116, 10imbi12d 312 . . 3  |-  ( b  =  B  ->  (
( ( A  e. 
P.  /\  1Q  <Q  b )  ->  E. x  e.  A  -.  (
x  .Q  b )  e.  A )  <->  ( ( A  e.  P.  /\  1Q  <Q  B )  ->  E. x  e.  A  -.  (
x  .Q  B )  e.  A ) ) )
12 prn0 8858 . . . . . 6  |-  ( A  e.  P.  ->  A  =/=  (/) )
13 n0 3629 . . . . . 6  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
1412, 13sylib 189 . . . . 5  |-  ( A  e.  P.  ->  E. y 
y  e.  A )
1514adantr 452 . . . 4  |-  ( ( A  e.  P.  /\  1Q  <Q  b )  ->  E. y  y  e.  A )
16 elprnq 8860 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  y  e.  Q. )
1716ad2ant2r 728 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  y  e.  Q. )
18 mulidnq 8832 . . . . . . . . . 10  |-  ( y  e.  Q.  ->  (
y  .Q  1Q )  =  y )
1917, 18syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  ( y  .Q  1Q )  =  y )
20 simplr 732 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  1Q  <Q  b )
21 ltmnq 8841 . . . . . . . . . . 11  |-  ( y  e.  Q.  ->  ( 1Q  <Q  b  <->  ( y  .Q  1Q )  <Q  (
y  .Q  b ) ) )
2221biimpa 471 . . . . . . . . . 10  |-  ( ( y  e.  Q.  /\  1Q  <Q  b )  -> 
( y  .Q  1Q )  <Q  ( y  .Q  b ) )
2317, 20, 22syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  ( y  .Q  1Q )  <Q  (
y  .Q  b ) )
2419, 23eqbrtrrd 4226 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  y  <Q  ( y  .Q  b ) )
251brel 4918 . . . . . . . . . . . 12  |-  ( 1Q 
<Q  b  ->  ( 1Q  e.  Q.  /\  b  e.  Q. ) )
2625simprd 450 . . . . . . . . . . 11  |-  ( 1Q 
<Q  b  ->  b  e. 
Q. )
2726ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  b  e.  Q. )
28 mulclnq 8816 . . . . . . . . . 10  |-  ( ( y  e.  Q.  /\  b  e.  Q. )  ->  ( y  .Q  b
)  e.  Q. )
2917, 27, 28syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  ( y  .Q  b )  e.  Q. )
30 ltexnq 8844 . . . . . . . . 9  |-  ( ( y  .Q  b )  e.  Q.  ->  (
y  <Q  ( y  .Q  b )  <->  E. z
( y  +Q  z
)  =  ( y  .Q  b ) ) )
3129, 30syl 16 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  ( y  <Q  ( y  .Q  b
)  <->  E. z ( y  +Q  z )  =  ( y  .Q  b
) ) )
3224, 31mpbid 202 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  E. z
( y  +Q  z
)  =  ( y  .Q  b ) )
33 simplll 735 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  (
y  .Q  b )  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b ) )  ->  A  e.  P. )
34 vex 2951 . . . . . . . . . 10  |-  z  e. 
_V
3534prlem934 8902 . . . . . . . . 9  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  z )  e.  A )
3633, 35syl 16 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  (
y  .Q  b )  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b ) )  ->  E. x  e.  A  -.  (
x  +Q  z )  e.  A )
3733adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  A  e.  P. )
38 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  ( y  .Q  b )  e.  A
)
39 eleq1 2495 . . . . . . . . . . . . . . 15  |-  ( ( y  +Q  z )  =  ( y  .Q  b )  ->  (
( y  +Q  z
)  e.  A  <->  ( y  .Q  b )  e.  A
) )
4039biimparc 474 . . . . . . . . . . . . . 14  |-  ( ( ( y  .Q  b
)  e.  A  /\  ( y  +Q  z
)  =  ( y  .Q  b ) )  ->  ( y  +Q  z )  e.  A
)
4138, 40sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  (
y  .Q  b )  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b ) )  ->  ( y  +Q  z )  e.  A
)
4241adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  (
y  +Q  z )  e.  A )
43 elprnq 8860 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  x  e.  Q. )
4433, 43sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  x  e.  Q. )
45 elprnq 8860 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  ( y  +Q  z
)  e.  A )  ->  ( y  +Q  z )  e.  Q. )
46 addnqf 8817 . . . . . . . . . . . . . . . . . . 19  |-  +Q  :
( Q.  X.  Q. )
--> Q.
4746fdmi 5588 . . . . . . . . . . . . . . . . . 18  |-  dom  +Q  =  ( Q.  X.  Q. )
48 0nnq 8793 . . . . . . . . . . . . . . . . . 18  |-  -.  (/)  e.  Q.
4947, 48ndmovrcl 6225 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  z )  e.  Q.  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
5049simprd 450 . . . . . . . . . . . . . . . 16  |-  ( ( y  +Q  z )  e.  Q.  ->  z  e.  Q. )
5145, 50syl 16 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  ( y  +Q  z
)  e.  A )  ->  z  e.  Q. )
5233, 41, 51syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  (
y  .Q  b )  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b ) )  ->  z  e.  Q. )
5352adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  z  e.  Q. )
54 addclnq 8814 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  z  e.  Q. )  ->  ( x  +Q  z
)  e.  Q. )
5544, 53, 54syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  (
x  +Q  z )  e.  Q. )
56 prub 8863 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  ( y  +Q  z
)  e.  A )  /\  ( x  +Q  z )  e.  Q. )  ->  ( -.  (
x  +Q  z )  e.  A  ->  (
y  +Q  z ) 
<Q  ( x  +Q  z
) ) )
5737, 42, 55, 56syl21anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  ( -.  ( x  +Q  z
)  e.  A  -> 
( y  +Q  z
)  <Q  ( x  +Q  z ) ) )
5827ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  b  e.  Q. )
59 mulclnq 8816 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  b  e.  Q. )  ->  ( x  .Q  b
)  e.  Q. )
6044, 58, 59syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  (
x  .Q  b )  e.  Q. )
6117ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  y  e.  Q. )
62 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  (
y  +Q  z )  =  ( y  .Q  b ) )
63 recclnq 8835 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
64 mulclnq 8816 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  Q.  /\  ( *Q `  y )  e.  Q. )  -> 
( z  .Q  ( *Q `  y ) )  e.  Q. )
6563, 64sylan2 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( z  .Q  ( *Q `  y ) )  e.  Q. )
6665ancoms 440 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( z  .Q  ( *Q `  y ) )  e.  Q. )
67 ltmnq 8841 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  .Q  ( *Q
`  y ) )  e.  Q.  ->  (
y  <Q  x  <->  ( (
z  .Q  ( *Q
`  y ) )  .Q  y )  <Q 
( ( z  .Q  ( *Q `  y
) )  .Q  x
) ) )
6866, 67syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  <Q  x  <->  ( ( z  .Q  ( *Q `  y ) )  .Q  y )  <Q 
( ( z  .Q  ( *Q `  y
) )  .Q  x
) ) )
69 mulassnq 8828 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  .Q  ( *Q
`  y ) )  .Q  y )  =  ( z  .Q  (
( *Q `  y
)  .Q  y ) )
70 mulcomnq 8822 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( *Q `  y )  .Q  y )  =  ( y  .Q  ( *Q `  y ) )
7170oveq2i 6084 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  .Q  ( ( *Q
`  y )  .Q  y ) )  =  ( z  .Q  (
y  .Q  ( *Q
`  y ) ) )
7269, 71eqtri 2455 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  .Q  ( *Q
`  y ) )  .Q  y )  =  ( z  .Q  (
y  .Q  ( *Q
`  y ) ) )
73 recidnq 8834 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
7473oveq2d 6089 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  Q.  ->  (
z  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( z  .Q  1Q ) )
75 mulidnq 8832 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  Q.  ->  (
z  .Q  1Q )  =  z )
7674, 75sylan9eq 2487 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( z  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  z )
7772, 76syl5eq 2479 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( ( z  .Q  ( *Q `  y
) )  .Q  y
)  =  z )
7877breq1d 4214 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( ( ( z  .Q  ( *Q `  y ) )  .Q  y )  <Q  (
( z  .Q  ( *Q `  y ) )  .Q  x )  <->  z  <Q  ( ( z  .Q  ( *Q `  y ) )  .Q  x ) ) )
7968, 78bitrd 245 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  <Q  x  <->  z 
<Q  ( ( z  .Q  ( *Q `  y
) )  .Q  x
) ) )
8079adantll 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  z  e.  Q. )  ->  ( y  <Q  x 
<->  z  <Q  ( (
z  .Q  ( *Q
`  y ) )  .Q  x ) ) )
81 mulnqf 8818 . . . . . . . . . . . . . . . . . . . . . 22  |-  .Q  :
( Q.  X.  Q. )
--> Q.
8281fdmi 5588 . . . . . . . . . . . . . . . . . . . . 21  |-  dom  .Q  =  ( Q.  X.  Q. )
8382, 48ndmovrcl 6225 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  .Q  b )  e.  Q.  ->  (
x  e.  Q.  /\  b  e.  Q. )
)
8483simpld 446 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  .Q  b )  e.  Q.  ->  x  e.  Q. )
85 ltanq 8840 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  Q.  ->  (
z  <Q  ( ( z  .Q  ( *Q `  y ) )  .Q  x )  <->  ( x  +Q  z )  <Q  (
x  +Q  ( ( z  .Q  ( *Q
`  y ) )  .Q  x ) ) ) )
8684, 85syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  .Q  b )  e.  Q.  ->  (
z  <Q  ( ( z  .Q  ( *Q `  y ) )  .Q  x )  <->  ( x  +Q  z )  <Q  (
x  +Q  ( ( z  .Q  ( *Q
`  y ) )  .Q  x ) ) ) )
8786adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( z  <Q  (
( z  .Q  ( *Q `  y ) )  .Q  x )  <->  ( x  +Q  z )  <Q  (
x  +Q  ( ( z  .Q  ( *Q
`  y ) )  .Q  x ) ) ) )
88 vex 2951 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
89 ovex 6098 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  .Q  ( *Q `  y ) )  e. 
_V
90 mulcomnq 8822 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  .Q  w )  =  ( w  .Q  u
)
91 distrnq 8830 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  .Q  ( w  +Q  v ) )  =  ( ( u  .Q  w )  +Q  (
u  .Q  v ) )
9288, 34, 89, 90, 91caovdir 6273 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  +Q  z )  .Q  ( x  .Q  ( *Q `  y ) ) )  =  ( ( y  .Q  (
x  .Q  ( *Q
`  y ) ) )  +Q  ( z  .Q  ( x  .Q  ( *Q `  y ) ) ) )
93 vex 2951 . . . . . . . . . . . . . . . . . . . . . 22  |-  x  e. 
_V
94 fvex 5734 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( *Q
`  y )  e. 
_V
95 mulassnq 8828 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u  .Q  w )  .Q  v )  =  ( u  .Q  (
w  .Q  v ) )
9688, 93, 94, 90, 95caov12 6267 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  .Q  ( x  .Q  ( *Q `  y ) ) )  =  ( x  .Q  ( y  .Q  ( *Q `  y ) ) )
9773oveq2d 6089 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  Q.  ->  (
x  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( x  .Q  1Q ) )
98 mulidnq 8832 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
9984, 98syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  .Q  b )  e.  Q.  ->  (
x  .Q  1Q )  =  x )
10097, 99sylan9eqr 2489 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  x )
10196, 100syl5eq 2479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( y  .Q  (
x  .Q  ( *Q
`  y ) ) )  =  x )
102 mulcomnq 8822 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  .Q  ( *Q `  y ) )  =  ( ( *Q `  y )  .Q  x
)
103102oveq2i 6084 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  .Q  ( x  .Q  ( *Q `  y ) ) )  =  ( z  .Q  ( ( *Q `  y )  .Q  x ) )
104 mulassnq 8828 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  .Q  ( *Q
`  y ) )  .Q  x )  =  ( z  .Q  (
( *Q `  y
)  .Q  x ) )
105103, 104eqtr4i 2458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  .Q  ( x  .Q  ( *Q `  y ) ) )  =  ( ( z  .Q  ( *Q `  y ) )  .Q  x )
106105a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( z  .Q  (
x  .Q  ( *Q
`  y ) ) )  =  ( ( z  .Q  ( *Q
`  y ) )  .Q  x ) )
107101, 106oveq12d 6091 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( ( y  .Q  ( x  .Q  ( *Q `  y ) ) )  +Q  ( z  .Q  ( x  .Q  ( *Q `  y ) ) ) )  =  ( x  +Q  (
( z  .Q  ( *Q `  y ) )  .Q  x ) ) )
10892, 107syl5eq 2479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( ( y  +Q  z )  .Q  (
x  .Q  ( *Q
`  y ) ) )  =  ( x  +Q  ( ( z  .Q  ( *Q `  y ) )  .Q  x ) ) )
109108breq2d 4216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( ( x  +Q  z )  <Q  (
( y  +Q  z
)  .Q  ( x  .Q  ( *Q `  y ) ) )  <-> 
( x  +Q  z
)  <Q  ( x  +Q  ( ( z  .Q  ( *Q `  y
) )  .Q  x
) ) ) )
11087, 109bitr4d 248 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( z  <Q  (
( z  .Q  ( *Q `  y ) )  .Q  x )  <->  ( x  +Q  z )  <Q  (
( y  +Q  z
)  .Q  ( x  .Q  ( *Q `  y ) ) ) ) )
111110adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  z  e.  Q. )  ->  ( z  <Q 
( ( z  .Q  ( *Q `  y
) )  .Q  x
)  <->  ( x  +Q  z )  <Q  (
( y  +Q  z
)  .Q  ( x  .Q  ( *Q `  y ) ) ) ) )
11280, 111bitrd 245 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  z  e.  Q. )  ->  ( y  <Q  x 
<->  ( x  +Q  z
)  <Q  ( ( y  +Q  z )  .Q  ( x  .Q  ( *Q `  y ) ) ) ) )
113112adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  ( z  e.  Q.  /\  ( y  +Q  z
)  =  ( y  .Q  b ) ) )  ->  ( y  <Q  x  <->  ( x  +Q  z )  <Q  (
( y  +Q  z
)  .Q  ( x  .Q  ( *Q `  y ) ) ) ) )
114 ltanq 8840 . . . . . . . . . . . . . . 15  |-  ( z  e.  Q.  ->  (
y  <Q  x  <->  ( z  +Q  y )  <Q  (
z  +Q  x ) ) )
115 addcomnq 8820 . . . . . . . . . . . . . . . 16  |-  ( z  +Q  y )  =  ( y  +Q  z
)
116 addcomnq 8820 . . . . . . . . . . . . . . . 16  |-  ( z  +Q  x )  =  ( x  +Q  z
)
117115, 116breq12i 4213 . . . . . . . . . . . . . . 15  |-  ( ( z  +Q  y ) 
<Q  ( z  +Q  x
)  <->  ( y  +Q  z )  <Q  (
x  +Q  z ) )
118114, 117syl6bb 253 . . . . . . . . . . . . . 14  |-  ( z  e.  Q.  ->  (
y  <Q  x  <->  ( y  +Q  z )  <Q  (
x  +Q  z ) ) )
119118ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  ( z  e.  Q.  /\  ( y  +Q  z
)  =  ( y  .Q  b ) ) )  ->  ( y  <Q  x  <->  ( y  +Q  z )  <Q  (
x  +Q  z ) ) )
120 oveq1 6080 . . . . . . . . . . . . . . . 16  |-  ( ( y  +Q  z )  =  ( y  .Q  b )  ->  (
( y  +Q  z
)  .Q  ( x  .Q  ( *Q `  y ) ) )  =  ( ( y  .Q  b )  .Q  ( x  .Q  ( *Q `  y ) ) ) )
121 vex 2951 . . . . . . . . . . . . . . . . . 18  |-  b  e. 
_V
12288, 121, 93, 90, 95, 94caov411 6271 . . . . . . . . . . . . . . . . 17  |-  ( ( y  .Q  b )  .Q  ( x  .Q  ( *Q `  y ) ) )  =  ( ( x  .Q  b
)  .Q  ( y  .Q  ( *Q `  y ) ) )
12373oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  Q.  ->  (
( x  .Q  b
)  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( ( x  .Q  b )  .Q  1Q ) )
124 mulidnq 8832 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  .Q  b )  e.  Q.  ->  (
( x  .Q  b
)  .Q  1Q )  =  ( x  .Q  b ) )
125123, 124sylan9eqr 2489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( ( x  .Q  b )  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  ( x  .Q  b ) )
126122, 125syl5eq 2479 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  .Q  b
)  e.  Q.  /\  y  e.  Q. )  ->  ( ( y  .Q  b )  .Q  (
x  .Q  ( *Q
`  y ) ) )  =  ( x  .Q  b ) )
127120, 126sylan9eqr 2489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  ( y  +Q  z
)  =  ( y  .Q  b ) )  ->  ( ( y  +Q  z )  .Q  ( x  .Q  ( *Q `  y ) ) )  =  ( x  .Q  b ) )
128127breq2d 4216 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  ( y  +Q  z
)  =  ( y  .Q  b ) )  ->  ( ( x  +Q  z )  <Q 
( ( y  +Q  z )  .Q  (
x  .Q  ( *Q
`  y ) ) )  <->  ( x  +Q  z )  <Q  (
x  .Q  b ) ) )
129128adantrl 697 . . . . . . . . . . . . 13  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  ( z  e.  Q.  /\  ( y  +Q  z
)  =  ( y  .Q  b ) ) )  ->  ( (
x  +Q  z ) 
<Q  ( ( y  +Q  z )  .Q  (
x  .Q  ( *Q
`  y ) ) )  <->  ( x  +Q  z )  <Q  (
x  .Q  b ) ) )
130113, 119, 1293bitr3d 275 . . . . . . . . . . . 12  |-  ( ( ( ( x  .Q  b )  e.  Q.  /\  y  e.  Q. )  /\  ( z  e.  Q.  /\  ( y  +Q  z
)  =  ( y  .Q  b ) ) )  ->  ( (
y  +Q  z ) 
<Q  ( x  +Q  z
)  <->  ( x  +Q  z )  <Q  (
x  .Q  b ) ) )
13160, 61, 53, 62, 130syl22anc 1185 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  (
( y  +Q  z
)  <Q  ( x  +Q  z )  <->  ( x  +Q  z )  <Q  (
x  .Q  b ) ) )
13257, 131sylibd 206 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  ( -.  ( x  +Q  z
)  e.  A  -> 
( x  +Q  z
)  <Q  ( x  .Q  b ) ) )
133 prcdnq 8862 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  ( x  .Q  b
)  e.  A )  ->  ( ( x  +Q  z )  <Q 
( x  .Q  b
)  ->  ( x  +Q  z )  e.  A
) )
134133impancom 428 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  ( x  +Q  z
)  <Q  ( x  .Q  b ) )  -> 
( ( x  .Q  b )  e.  A  ->  ( x  +Q  z
)  e.  A ) )
135134con3d 127 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( x  +Q  z
)  <Q  ( x  .Q  b ) )  -> 
( -.  ( x  +Q  z )  e.  A  ->  -.  (
x  .Q  b )  e.  A ) )
136135ex 424 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  (
( x  +Q  z
)  <Q  ( x  .Q  b )  ->  ( -.  ( x  +Q  z
)  e.  A  ->  -.  ( x  .Q  b
)  e.  A ) ) )
137136com23 74 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( -.  ( x  +Q  z
)  e.  A  -> 
( ( x  +Q  z )  <Q  (
x  .Q  b )  ->  -.  ( x  .Q  b )  e.  A
) ) )
13837, 137syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  ( -.  ( x  +Q  z
)  e.  A  -> 
( ( x  +Q  z )  <Q  (
x  .Q  b )  ->  -.  ( x  .Q  b )  e.  A
) ) )
139132, 138mpdd 38 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  (
y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b
) )  /\  x  e.  A )  ->  ( -.  ( x  +Q  z
)  e.  A  ->  -.  ( x  .Q  b
)  e.  A ) )
140139reximdva 2810 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  (
y  .Q  b )  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b ) )  ->  ( E. x  e.  A  -.  ( x  +Q  z
)  e.  A  ->  E. x  e.  A  -.  ( x  .Q  b
)  e.  A ) )
14136, 140mpd 15 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  (
y  .Q  b )  e.  A ) )  /\  ( y  +Q  z )  =  ( y  .Q  b ) )  ->  E. x  e.  A  -.  (
x  .Q  b )  e.  A )
14232, 141exlimddv 1648 . . . . . 6  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  ( y  e.  A  /\  ( y  .Q  b
)  e.  A ) )  ->  E. x  e.  A  -.  (
x  .Q  b )  e.  A )
143142expr 599 . . . . 5  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  y  e.  A
)  ->  ( (
y  .Q  b )  e.  A  ->  E. x  e.  A  -.  (
x  .Q  b )  e.  A ) )
144 oveq1 6080 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  .Q  b )  =  ( y  .Q  b ) )
145144eleq1d 2501 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  .Q  b
)  e.  A  <->  ( y  .Q  b )  e.  A
) )
146145notbid 286 . . . . . . . 8  |-  ( x  =  y  ->  ( -.  ( x  .Q  b
)  e.  A  <->  -.  (
y  .Q  b )  e.  A ) )
147146rspcev 3044 . . . . . . 7  |-  ( ( y  e.  A  /\  -.  ( y  .Q  b
)  e.  A )  ->  E. x  e.  A  -.  ( x  .Q  b
)  e.  A )
148147ex 424 . . . . . 6  |-  ( y  e.  A  ->  ( -.  ( y  .Q  b
)  e.  A  ->  E. x  e.  A  -.  ( x  .Q  b
)  e.  A ) )
149148adantl 453 . . . . 5  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  y  e.  A
)  ->  ( -.  ( y  .Q  b
)  e.  A  ->  E. x  e.  A  -.  ( x  .Q  b
)  e.  A ) )
150143, 149pm2.61d 152 . . . 4  |-  ( ( ( A  e.  P.  /\  1Q  <Q  b )  /\  y  e.  A
)  ->  E. x  e.  A  -.  (
x  .Q  b )  e.  A )
15115, 150exlimddv 1648 . . 3  |-  ( ( A  e.  P.  /\  1Q  <Q  b )  ->  E. x  e.  A  -.  ( x  .Q  b
)  e.  A )
15211, 151vtoclg 3003 . 2  |-  ( B  e.  Q.  ->  (
( A  e.  P.  /\  1Q  <Q  B )  ->  E. x  e.  A  -.  ( x  .Q  B
)  e.  A ) )
1534, 152mpcom 34 1  |-  ( ( A  e.  P.  /\  1Q  <Q  B )  ->  E. x  e.  A  -.  ( x  .Q  B
)  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   (/)c0 3620   class class class wbr 4204    X. cxp 4868   ` cfv 5446  (class class class)co 6073   Q.cnq 8719   1Qc1q 8720    +Q cplq 8722    .Q cmq 8723   *Qcrq 8724    <Q cltq 8725   P.cnp 8726
This theorem is referenced by:  reclem3pr  8918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ni 8741  df-pli 8742  df-mi 8743  df-lti 8744  df-plpq 8777  df-mpq 8778  df-ltpq 8779  df-enq 8780  df-nq 8781  df-erq 8782  df-plq 8783  df-mq 8784  df-1nq 8785  df-rq 8786  df-ltnq 8787  df-np 8850
  Copyright terms: Public domain W3C validator