MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Unicode version

Theorem prmorcht 20829
Description: Relate the primorial (product of the first  n primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
Assertion
Ref Expression
prmorcht  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  (  seq  1 (  x.  ,  F ) `  A ) )

Proof of Theorem prmorcht
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 9940 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  RR )
2 chtval 20761 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ k  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  k ) )
31, 2syl 16 . . . . . 6  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  k ) )
4 2nn 10066 . . . . . . . . . . 11  |-  2  e.  NN
5 nnuz 10454 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
64, 5eleqtri 2460 . . . . . . . . . 10  |-  2  e.  ( ZZ>= `  1 )
7 ppisval2 20755 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
( ( 0 [,] A )  i^i  Prime )  =  ( ( 1 ... ( |_ `  A ) )  i^i 
Prime ) )
81, 6, 7sylancl 644 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 1 ... ( |_ `  A
) )  i^i  Prime ) )
9 nnz 10236 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  ZZ )
10 flid 11144 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
119, 10syl 16 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( |_ `  A )  =  A )
1211oveq2d 6037 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... A
) )
1312ineq1d 3485 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 1 ... ( |_ `  A ) )  i^i  Prime )  =  ( ( 1 ... A
)  i^i  Prime ) )
148, 13eqtrd 2420 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 1 ... A )  i^i  Prime ) )
1514sumeq1d 12423 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
) )
16 inss1 3505 . . . . . . . 8  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
1716sseli 3288 . . . . . . . . . 10  |-  ( k  e.  ( ( 1 ... A )  i^i 
Prime )  ->  k  e.  ( 1 ... A
) )
18 elfznn 11013 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... A )  ->  k  e.  NN )
1918adantl 453 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  k  e.  NN )
2019nnrpd 10580 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  k  e.  RR+ )
2120relogcld 20386 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( log `  k
)  e.  RR )
2221recnd 9048 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( log `  k
)  e.  CC )
2317, 22sylan2 461 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  k  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  k )  e.  CC )
2423ralrimiva 2733 . . . . . . . 8  |-  ( A  e.  NN  ->  A. k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  e.  CC )
25 fzfi 11239 . . . . . . . . . 10  |-  ( 1 ... A )  e. 
Fin
2625olci 381 . . . . . . . . 9  |-  ( ( 1 ... A ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... A )  e. 
Fin )
27 sumss2 12448 . . . . . . . . 9  |-  ( ( ( ( ( 1 ... A )  i^i 
Prime )  C_  ( 1 ... A )  /\  A. k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k )  e.  CC )  /\  ( ( 1 ... A )  C_  ( ZZ>= `  1 )  \/  ( 1 ... A
)  e.  Fin )
)  ->  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
2826, 27mpan2 653 . . . . . . . 8  |-  ( ( ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A )  /\  A. k  e.  ( (
1 ... A )  i^i 
Prime ) ( log `  k
)  e.  CC )  ->  sum_ k  e.  ( ( 1 ... A
)  i^i  Prime ) ( log `  k )  =  sum_ k  e.  ( 1 ... A ) if ( k  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  k
) ,  0 ) )
2916, 24, 28sylancr 645 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
3015, 29eqtrd 2420 . . . . . 6  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
313, 30eqtrd 2420 . . . . 5  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( 1 ... A ) if ( k  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  k
) ,  0 ) )
32 elin 3474 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( k  e.  ( 1 ... A
)  /\  k  e.  Prime ) )
3332baibr 873 . . . . . . 7  |-  ( k  e.  ( 1 ... A )  ->  (
k  e.  Prime  <->  k  e.  ( ( 1 ... A )  i^i  Prime ) ) )
3433ifbid 3701 . . . . . 6  |-  ( k  e.  ( 1 ... A )  ->  if ( k  e.  Prime ,  ( log `  k
) ,  0 )  =  if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
3534sumeq2i 12421 . . . . 5  |-  sum_ k  e.  ( 1 ... A
) if ( k  e.  Prime ,  ( log `  k ) ,  0 )  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 )
3631, 35syl6eqr 2438 . . . 4  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( 1 ... A ) if ( k  e. 
Prime ,  ( log `  k ) ,  0 ) )
37 eleq1 2448 . . . . . . . 8  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
38 fveq2 5669 . . . . . . . 8  |-  ( n  =  k  ->  ( log `  n )  =  ( log `  k
) )
39 eqidd 2389 . . . . . . . 8  |-  ( n  =  k  ->  0  =  0 )
4037, 38, 39ifbieq12d 3705 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
41 eqid 2388 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )
42 fvex 5683 . . . . . . . 8  |-  ( log `  k )  e.  _V
43 0cn 9018 . . . . . . . . 9  |-  0  e.  CC
4443elexi 2909 . . . . . . . 8  |-  0  e.  _V
4542, 44ifex 3741 . . . . . . 7  |-  if ( k  e.  Prime ,  ( log `  k ) ,  0 )  e. 
_V
4640, 41, 45fvmpt 5746 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
4719, 46syl 16 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  0 ) )
48 elnnuz 10455 . . . . . 6  |-  ( A  e.  NN  <->  A  e.  ( ZZ>= `  1 )
)
4948biimpi 187 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ( ZZ>= `  1 )
)
50 ifcl 3719 . . . . . 6  |-  ( ( ( log `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  e. 
Prime ,  ( log `  k ) ,  0 )  e.  CC )
5122, 43, 50sylancl 644 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  ( log `  k ) ,  0 )  e.  CC )
5247, 49, 51fsumser 12452 . . . 4  |-  ( A  e.  NN  ->  sum_ k  e.  ( 1 ... A
) if ( k  e.  Prime ,  ( log `  k ) ,  0 )  =  (  seq  1 (  +  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) )
5336, 52eqtrd 2420 . . 3  |-  ( A  e.  NN  ->  ( theta `  A )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) ) `  A ) )
5453fveq2d 5673 . 2  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  ( exp `  (  seq  1 (  +  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) ) )
55 addcl 9006 . . . 4  |-  ( ( k  e.  CC  /\  p  e.  CC )  ->  ( k  +  p
)  e.  CC )
5655adantl 453 . . 3  |-  ( ( A  e.  NN  /\  ( k  e.  CC  /\  p  e.  CC ) )  ->  ( k  +  p )  e.  CC )
5747, 51eqeltrd 2462 . . 3  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  e.  CC )
58 efadd 12624 . . . 4  |-  ( ( k  e.  CC  /\  p  e.  CC )  ->  ( exp `  (
k  +  p ) )  =  ( ( exp `  k )  x.  ( exp `  p
) ) )
5958adantl 453 . . 3  |-  ( ( A  e.  NN  /\  ( k  e.  CC  /\  p  e.  CC ) )  ->  ( exp `  ( k  +  p
) )  =  ( ( exp `  k
)  x.  ( exp `  p ) ) )
60 1nn 9944 . . . . . . 7  |-  1  e.  NN
61 ifcl 3719 . . . . . . 7  |-  ( ( k  e.  NN  /\  1  e.  NN )  ->  if ( k  e. 
Prime ,  k , 
1 )  e.  NN )
6219, 60, 61sylancl 644 . . . . . 6  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  NN )
6362nnrpd 10580 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  RR+ )
6463reeflogd 20387 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) )  =  if ( k  e.  Prime ,  k ,  1 ) )
65 fvif 5684 . . . . . . 7  |-  ( log `  if ( k  e. 
Prime ,  k , 
1 ) )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  ( log `  1 ) )
66 log1 20348 . . . . . . . 8  |-  ( log `  1 )  =  0
67 ifeq2 3688 . . . . . . . 8  |-  ( ( log `  1 )  =  0  ->  if ( k  e.  Prime ,  ( log `  k
) ,  ( log `  1 ) )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
6866, 67ax-mp 8 . . . . . . 7  |-  if ( k  e.  Prime ,  ( log `  k ) ,  ( log `  1
) )  =  if ( k  e.  Prime ,  ( log `  k
) ,  0 )
6965, 68eqtri 2408 . . . . . 6  |-  ( log `  if ( k  e. 
Prime ,  k , 
1 ) )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  0 )
7047, 69syl6eqr 2438 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  =  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) )
7170fveq2d 5673 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k ) )  =  ( exp `  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) ) )
72 id 20 . . . . . . 7  |-  ( n  =  k  ->  n  =  k )
73 eqidd 2389 . . . . . . 7  |-  ( n  =  k  ->  1  =  1 )
7437, 72, 73ifbieq12d 3705 . . . . . 6  |-  ( n  =  k  ->  if ( n  e.  Prime ,  n ,  1 )  =  if ( k  e.  Prime ,  k ,  1 ) )
75 prmorcht.1 . . . . . 6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
76 vex 2903 . . . . . . 7  |-  k  e. 
_V
7760elexi 2909 . . . . . . 7  |-  1  e.  _V
7876, 77ifex 3741 . . . . . 6  |-  if ( k  e.  Prime ,  k ,  1 )  e. 
_V
7974, 75, 78fvmpt 5746 . . . . 5  |-  ( k  e.  NN  ->  ( F `  k )  =  if ( k  e. 
Prime ,  k , 
1 ) )
8019, 79syl 16 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  k ,  1 ) )
8164, 71, 803eqtr4d 2430 . . 3  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k ) )  =  ( F `
 k ) )
8256, 57, 49, 59, 81seqhomo 11298 . 2  |-  ( A  e.  NN  ->  ( exp `  (  seq  1
(  +  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) )  =  (  seq  1 (  x.  ,  F ) `  A ) )
8354, 82eqtrd 2420 1  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  (  seq  1 (  x.  ,  F ) `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650    i^i cin 3263    C_ wss 3264   ifcif 3683    e. cmpt 4208   ` cfv 5395  (class class class)co 6021   Fincfn 7046   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929   NNcn 9933   2c2 9982   ZZcz 10215   ZZ>=cuz 10421   [,]cicc 10852   ...cfz 10976   |_cfl 11129    seq cseq 11251   sum_csu 12407   expce 12592   Primecprime 13007   logclog 20320   thetaccht 20741
This theorem is referenced by:  chtublem  20863  bposlem6  20941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-dvds 12781  df-prm 13008  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-cht 20747
  Copyright terms: Public domain W3C validator