MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Structured version   Unicode version

Theorem prmorcht 20961
Description: Relate the primorial (product of the first  n primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
Assertion
Ref Expression
prmorcht  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  (  seq  1 (  x.  ,  F ) `  A ) )

Proof of Theorem prmorcht
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 10007 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  RR )
2 chtval 20893 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ k  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  k ) )
31, 2syl 16 . . . . . 6  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  k ) )
4 2nn 10133 . . . . . . . . . . 11  |-  2  e.  NN
5 nnuz 10521 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
64, 5eleqtri 2508 . . . . . . . . . 10  |-  2  e.  ( ZZ>= `  1 )
7 ppisval2 20887 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
( ( 0 [,] A )  i^i  Prime )  =  ( ( 1 ... ( |_ `  A ) )  i^i 
Prime ) )
81, 6, 7sylancl 644 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 1 ... ( |_ `  A
) )  i^i  Prime ) )
9 nnz 10303 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  ZZ )
10 flid 11216 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
119, 10syl 16 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( |_ `  A )  =  A )
1211oveq2d 6097 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... A
) )
1312ineq1d 3541 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 1 ... ( |_ `  A ) )  i^i  Prime )  =  ( ( 1 ... A
)  i^i  Prime ) )
148, 13eqtrd 2468 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 1 ... A )  i^i  Prime ) )
1514sumeq1d 12495 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
) )
16 inss1 3561 . . . . . . . 8  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
1716sseli 3344 . . . . . . . . . 10  |-  ( k  e.  ( ( 1 ... A )  i^i 
Prime )  ->  k  e.  ( 1 ... A
) )
18 elfznn 11080 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... A )  ->  k  e.  NN )
1918adantl 453 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  k  e.  NN )
2019nnrpd 10647 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  k  e.  RR+ )
2120relogcld 20518 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( log `  k
)  e.  RR )
2221recnd 9114 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( log `  k
)  e.  CC )
2317, 22sylan2 461 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  k  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  k )  e.  CC )
2423ralrimiva 2789 . . . . . . . 8  |-  ( A  e.  NN  ->  A. k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  e.  CC )
25 fzfi 11311 . . . . . . . . . 10  |-  ( 1 ... A )  e. 
Fin
2625olci 381 . . . . . . . . 9  |-  ( ( 1 ... A ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... A )  e. 
Fin )
27 sumss2 12520 . . . . . . . . 9  |-  ( ( ( ( ( 1 ... A )  i^i 
Prime )  C_  ( 1 ... A )  /\  A. k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k )  e.  CC )  /\  ( ( 1 ... A )  C_  ( ZZ>= `  1 )  \/  ( 1 ... A
)  e.  Fin )
)  ->  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
2826, 27mpan2 653 . . . . . . . 8  |-  ( ( ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A )  /\  A. k  e.  ( (
1 ... A )  i^i 
Prime ) ( log `  k
)  e.  CC )  ->  sum_ k  e.  ( ( 1 ... A
)  i^i  Prime ) ( log `  k )  =  sum_ k  e.  ( 1 ... A ) if ( k  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  k
) ,  0 ) )
2916, 24, 28sylancr 645 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
3015, 29eqtrd 2468 . . . . . 6  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
313, 30eqtrd 2468 . . . . 5  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( 1 ... A ) if ( k  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  k
) ,  0 ) )
32 elin 3530 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( k  e.  ( 1 ... A
)  /\  k  e.  Prime ) )
3332baibr 873 . . . . . . 7  |-  ( k  e.  ( 1 ... A )  ->  (
k  e.  Prime  <->  k  e.  ( ( 1 ... A )  i^i  Prime ) ) )
3433ifbid 3757 . . . . . 6  |-  ( k  e.  ( 1 ... A )  ->  if ( k  e.  Prime ,  ( log `  k
) ,  0 )  =  if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
3534sumeq2i 12493 . . . . 5  |-  sum_ k  e.  ( 1 ... A
) if ( k  e.  Prime ,  ( log `  k ) ,  0 )  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 )
3631, 35syl6eqr 2486 . . . 4  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( 1 ... A ) if ( k  e. 
Prime ,  ( log `  k ) ,  0 ) )
37 eleq1 2496 . . . . . . . 8  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
38 fveq2 5728 . . . . . . . 8  |-  ( n  =  k  ->  ( log `  n )  =  ( log `  k
) )
39 eqidd 2437 . . . . . . . 8  |-  ( n  =  k  ->  0  =  0 )
4037, 38, 39ifbieq12d 3761 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
41 eqid 2436 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )
42 fvex 5742 . . . . . . . 8  |-  ( log `  k )  e.  _V
43 0cn 9084 . . . . . . . . 9  |-  0  e.  CC
4443elexi 2965 . . . . . . . 8  |-  0  e.  _V
4542, 44ifex 3797 . . . . . . 7  |-  if ( k  e.  Prime ,  ( log `  k ) ,  0 )  e. 
_V
4640, 41, 45fvmpt 5806 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
4719, 46syl 16 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  0 ) )
48 elnnuz 10522 . . . . . 6  |-  ( A  e.  NN  <->  A  e.  ( ZZ>= `  1 )
)
4948biimpi 187 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ( ZZ>= `  1 )
)
50 ifcl 3775 . . . . . 6  |-  ( ( ( log `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  e. 
Prime ,  ( log `  k ) ,  0 )  e.  CC )
5122, 43, 50sylancl 644 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  ( log `  k ) ,  0 )  e.  CC )
5247, 49, 51fsumser 12524 . . . 4  |-  ( A  e.  NN  ->  sum_ k  e.  ( 1 ... A
) if ( k  e.  Prime ,  ( log `  k ) ,  0 )  =  (  seq  1 (  +  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) )
5336, 52eqtrd 2468 . . 3  |-  ( A  e.  NN  ->  ( theta `  A )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) ) `  A ) )
5453fveq2d 5732 . 2  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  ( exp `  (  seq  1 (  +  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) ) )
55 addcl 9072 . . . 4  |-  ( ( k  e.  CC  /\  p  e.  CC )  ->  ( k  +  p
)  e.  CC )
5655adantl 453 . . 3  |-  ( ( A  e.  NN  /\  ( k  e.  CC  /\  p  e.  CC ) )  ->  ( k  +  p )  e.  CC )
5747, 51eqeltrd 2510 . . 3  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  e.  CC )
58 efadd 12696 . . . 4  |-  ( ( k  e.  CC  /\  p  e.  CC )  ->  ( exp `  (
k  +  p ) )  =  ( ( exp `  k )  x.  ( exp `  p
) ) )
5958adantl 453 . . 3  |-  ( ( A  e.  NN  /\  ( k  e.  CC  /\  p  e.  CC ) )  ->  ( exp `  ( k  +  p
) )  =  ( ( exp `  k
)  x.  ( exp `  p ) ) )
60 1nn 10011 . . . . . . 7  |-  1  e.  NN
61 ifcl 3775 . . . . . . 7  |-  ( ( k  e.  NN  /\  1  e.  NN )  ->  if ( k  e. 
Prime ,  k , 
1 )  e.  NN )
6219, 60, 61sylancl 644 . . . . . 6  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  NN )
6362nnrpd 10647 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  RR+ )
6463reeflogd 20519 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) )  =  if ( k  e.  Prime ,  k ,  1 ) )
65 fvif 5743 . . . . . . 7  |-  ( log `  if ( k  e. 
Prime ,  k , 
1 ) )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  ( log `  1 ) )
66 log1 20480 . . . . . . . 8  |-  ( log `  1 )  =  0
67 ifeq2 3744 . . . . . . . 8  |-  ( ( log `  1 )  =  0  ->  if ( k  e.  Prime ,  ( log `  k
) ,  ( log `  1 ) )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
6866, 67ax-mp 8 . . . . . . 7  |-  if ( k  e.  Prime ,  ( log `  k ) ,  ( log `  1
) )  =  if ( k  e.  Prime ,  ( log `  k
) ,  0 )
6965, 68eqtri 2456 . . . . . 6  |-  ( log `  if ( k  e. 
Prime ,  k , 
1 ) )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  0 )
7047, 69syl6eqr 2486 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  =  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) )
7170fveq2d 5732 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k ) )  =  ( exp `  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) ) )
72 id 20 . . . . . . 7  |-  ( n  =  k  ->  n  =  k )
73 eqidd 2437 . . . . . . 7  |-  ( n  =  k  ->  1  =  1 )
7437, 72, 73ifbieq12d 3761 . . . . . 6  |-  ( n  =  k  ->  if ( n  e.  Prime ,  n ,  1 )  =  if ( k  e.  Prime ,  k ,  1 ) )
75 prmorcht.1 . . . . . 6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
76 vex 2959 . . . . . . 7  |-  k  e. 
_V
7760elexi 2965 . . . . . . 7  |-  1  e.  _V
7876, 77ifex 3797 . . . . . 6  |-  if ( k  e.  Prime ,  k ,  1 )  e. 
_V
7974, 75, 78fvmpt 5806 . . . . 5  |-  ( k  e.  NN  ->  ( F `  k )  =  if ( k  e. 
Prime ,  k , 
1 ) )
8019, 79syl 16 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  k ,  1 ) )
8164, 71, 803eqtr4d 2478 . . 3  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k ) )  =  ( F `
 k ) )
8256, 57, 49, 59, 81seqhomo 11370 . 2  |-  ( A  e.  NN  ->  ( exp `  (  seq  1
(  +  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) )  =  (  seq  1 (  x.  ,  F ) `  A ) )
8354, 82eqtrd 2468 1  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  (  seq  1 (  x.  ,  F ) `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705    i^i cin 3319    C_ wss 3320   ifcif 3739    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995   NNcn 10000   2c2 10049   ZZcz 10282   ZZ>=cuz 10488   [,]cicc 10919   ...cfz 11043   |_cfl 11201    seq cseq 11323   sum_csu 12479   expce 12664   Primecprime 13079   logclog 20452   thetaccht 20873
This theorem is referenced by:  chtublem  20995  bposlem6  21073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-prm 13080  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cht 20879
  Copyright terms: Public domain W3C validator