MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmax Unicode version

Theorem prnmax 8499
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmax  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x )
Distinct variable groups:    x, A    x, B

Proof of Theorem prnmax
StepHypRef Expression
1 eleq1 2313 . . . . 5  |-  ( y  =  B  ->  (
y  e.  A  <->  B  e.  A ) )
21anbi2d 687 . . . 4  |-  ( y  =  B  ->  (
( A  e.  P.  /\  y  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
3 breq1 3923 . . . . 5  |-  ( y  =  B  ->  (
y  <Q  x  <->  B  <Q  x ) )
43rexbidv 2528 . . . 4  |-  ( y  =  B  ->  ( E. x  e.  A  y  <Q  x  <->  E. x  e.  A  B  <Q  x ) )
52, 4imbi12d 313 . . 3  |-  ( y  =  B  ->  (
( ( A  e. 
P.  /\  y  e.  A )  ->  E. x  e.  A  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x ) ) )
6 elnpi 8492 . . . . . 6  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. y  e.  A  ( A. x ( x 
<Q  y  ->  x  e.  A )  /\  E. x  e.  A  y  <Q  x ) ) )
76simprbi 452 . . . . 5  |-  ( A  e.  P.  ->  A. y  e.  A  ( A. x ( x  <Q  y  ->  x  e.  A
)  /\  E. x  e.  A  y  <Q  x ) )
87r19.21bi 2603 . . . 4  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  ( A. x ( x  <Q  y  ->  x  e.  A )  /\  E. x  e.  A  y 
<Q  x ) )
98simprd 451 . . 3  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  E. x  e.  A  y  <Q  x )
105, 9vtoclg 2781 . 2  |-  ( B  e.  A  ->  (
( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x ) )
1110anabsi7 795 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   _Vcvv 2727    C. wpss 3079   (/)c0 3362   class class class wbr 3920   Q.cnq 8354    <Q cltq 8360   P.cnp 8361
This theorem is referenced by:  npomex  8500  prnmadd  8501  genpnmax  8511  1idpr  8533  ltexprlem4  8543  reclem3pr  8553  suplem1pr  8556
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-np 8485
  Copyright terms: Public domain W3C validator