MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmax Unicode version

Theorem prnmax 8619
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmax  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x )
Distinct variable groups:    x, A    x, B

Proof of Theorem prnmax
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2343 . . . . 5  |-  ( y  =  B  ->  (
y  e.  A  <->  B  e.  A ) )
21anbi2d 684 . . . 4  |-  ( y  =  B  ->  (
( A  e.  P.  /\  y  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
3 breq1 4026 . . . . 5  |-  ( y  =  B  ->  (
y  <Q  x  <->  B  <Q  x ) )
43rexbidv 2564 . . . 4  |-  ( y  =  B  ->  ( E. x  e.  A  y  <Q  x  <->  E. x  e.  A  B  <Q  x ) )
52, 4imbi12d 311 . . 3  |-  ( y  =  B  ->  (
( ( A  e. 
P.  /\  y  e.  A )  ->  E. x  e.  A  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x ) ) )
6 elnpi 8612 . . . . . 6  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. y  e.  A  ( A. x ( x 
<Q  y  ->  x  e.  A )  /\  E. x  e.  A  y  <Q  x ) ) )
76simprbi 450 . . . . 5  |-  ( A  e.  P.  ->  A. y  e.  A  ( A. x ( x  <Q  y  ->  x  e.  A
)  /\  E. x  e.  A  y  <Q  x ) )
87r19.21bi 2641 . . . 4  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  ( A. x ( x  <Q  y  ->  x  e.  A )  /\  E. x  e.  A  y 
<Q  x ) )
98simprd 449 . . 3  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  E. x  e.  A  y  <Q  x )
105, 9vtoclg 2843 . 2  |-  ( B  e.  A  ->  (
( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x ) )
1110anabsi7 792 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C. wpss 3153   (/)c0 3455   class class class wbr 4023   Q.cnq 8474    <Q cltq 8480   P.cnp 8481
This theorem is referenced by:  npomex  8620  prnmadd  8621  genpnmax  8631  1idpr  8653  ltexprlem4  8663  reclem3pr  8673  suplem1pr  8676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-np 8605
  Copyright terms: Public domain W3C validator