MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prub Unicode version

Theorem prub 8708
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
prub  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  B  <Q  C ) )

Proof of Theorem prub
StepHypRef Expression
1 eleq1 2418 . . . . . . 7  |-  ( B  =  C  ->  ( B  e.  A  <->  C  e.  A ) )
21biimpcd 215 . . . . . 6  |-  ( B  e.  A  ->  ( B  =  C  ->  C  e.  A ) )
32adantl 452 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( B  =  C  ->  C  e.  A
) )
4 prcdnq 8707 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
53, 4jaod 369 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( ( B  =  C  \/  C  <Q  B )  ->  C  e.  A ) )
65con3d 125 . . 3  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( -.  C  e.  A  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
76adantr 451 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
8 elprnq 8705 . . 3  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  B  e.  Q. )
9 ltsonq 8683 . . . 4  |-  <Q  Or  Q.
10 sotric 4422 . . . 4  |-  ( ( 
<Q  Or  Q.  /\  ( B  e.  Q.  /\  C  e.  Q. ) )  -> 
( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
119, 10mpan 651 . . 3  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
128, 11sylan 457 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
137, 12sylibrd 225 1  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  B  <Q  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1642    e. wcel 1710   class class class wbr 4104    Or wor 4395   Q.cnq 8564    <Q cltq 8570   P.cnp 8571
This theorem is referenced by:  genpnnp  8719  psslinpr  8745  ltexprlem6  8755  ltexprlem7  8756  prlem936  8761  reclem4pr  8764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-recs 6475  df-rdg 6510  df-oadd 6570  df-omul 6571  df-er 6747  df-ni 8586  df-mi 8588  df-lti 8589  df-ltpq 8624  df-enq 8625  df-nq 8626  df-ltnq 8632  df-np 8695
  Copyright terms: Public domain W3C validator