MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prunioo Unicode version

Theorem prunioo 10856
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
prunioo  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )

Proof of Theorem prunioo
StepHypRef Expression
1 simp3 957 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  <_  B )
2 xrleloe 10570 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B ) ) )
323adant3 975 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B ) ) )
4 df-pr 3723 . . . . . . . . . . 11  |-  { A ,  B }  =  ( { A }  u.  { B } )
54uneq2i 3402 . . . . . . . . . 10  |-  ( ( A (,) B )  u.  { A ,  B } )  =  ( ( A (,) B
)  u.  ( { A }  u.  { B } ) )
6 unass 3408 . . . . . . . . . 10  |-  ( ( ( A (,) B
)  u.  { A } )  u.  { B } )  =  ( ( A (,) B
)  u.  ( { A }  u.  { B } ) )
75, 6eqtr4i 2381 . . . . . . . . 9  |-  ( ( A (,) B )  u.  { A ,  B } )  =  ( ( ( A (,) B )  u.  { A } )  u.  { B } )
8 uncom 3395 . . . . . . . . . . 11  |-  ( ( A (,) B )  u.  { A }
)  =  ( { A }  u.  ( A (,) B ) )
9 snunioo 10854 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( { A }  u.  ( A (,) B ) )  =  ( A [,) B ) )
108, 9syl5eq 2402 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A (,) B
)  u.  { A } )  =  ( A [,) B ) )
1110uneq1d 3404 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( ( A (,) B )  u.  { A } )  u.  { B } )  =  ( ( A [,) B
)  u.  { B } ) )
127, 11syl5eq 2402 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( ( A [,) B )  u.  { B } ) )
13123expa 1151 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  <  B )  ->  ( ( A (,) B )  u. 
{ A ,  B } )  =  ( ( A [,) B
)  u.  { B } ) )
14133adantl3 1113 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  A  <  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( ( A [,) B )  u.  { B } ) )
15 snunico 10855 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A [,) B
)  u.  { B } )  =  ( A [,] B ) )
1615adantr 451 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  A  <  B )  ->  (
( A [,) B
)  u.  { B } )  =  ( A [,] B ) )
1714, 16eqtrd 2390 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  A  <  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
1817ex 423 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  <  B  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) ) )
19 iccid 10793 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
20193ad2ant1 976 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A [,] A )  =  { A } )
2120eqcomd 2363 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  { A }  =  ( A [,] A ) )
22 uncom 3395 . . . . . . . 8  |-  ( (/)  u. 
{ A } )  =  ( { A }  u.  (/) )
23 un0 3555 . . . . . . . 8  |-  ( { A }  u.  (/) )  =  { A }
2422, 23eqtri 2378 . . . . . . 7  |-  ( (/)  u. 
{ A } )  =  { A }
25 iooid 10776 . . . . . . . . 9  |-  ( A (,) A )  =  (/)
26 oveq2 5953 . . . . . . . . 9  |-  ( A  =  B  ->  ( A (,) A )  =  ( A (,) B
) )
2725, 26syl5eqr 2404 . . . . . . . 8  |-  ( A  =  B  ->  (/)  =  ( A (,) B ) )
28 dfsn2 3730 . . . . . . . . 9  |-  { A }  =  { A ,  A }
29 preq2 3783 . . . . . . . . 9  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
3028, 29syl5eq 2402 . . . . . . . 8  |-  ( A  =  B  ->  { A }  =  { A ,  B } )
3127, 30uneq12d 3406 . . . . . . 7  |-  ( A  =  B  ->  ( (/) 
u.  { A }
)  =  ( ( A (,) B )  u.  { A ,  B } ) )
3224, 31syl5eqr 2404 . . . . . 6  |-  ( A  =  B  ->  { A }  =  ( ( A (,) B )  u. 
{ A ,  B } ) )
33 oveq2 5953 . . . . . 6  |-  ( A  =  B  ->  ( A [,] A )  =  ( A [,] B
) )
3432, 33eqeq12d 2372 . . . . 5  |-  ( A  =  B  ->  ( { A }  =  ( A [,] A )  <-> 
( ( A (,) B )  u.  { A ,  B }
)  =  ( A [,] B ) ) )
3521, 34syl5ibcom 211 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  =  B  ->  ( ( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) ) )
3618, 35jaod 369 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A  <  B  \/  A  =  B
)  ->  ( ( A (,) B )  u. 
{ A ,  B } )  =  ( A [,] B ) ) )
373, 36sylbid 206 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  <_  B  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) ) )
381, 37mpd 14 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    u. cun 3226   (/)c0 3531   {csn 3716   {cpr 3717   class class class wbr 4104  (class class class)co 5945   RR*cxr 8956    < clt 8957    <_ cle 8958   (,)cioo 10748   [,)cico 10750   [,]cicc 10751
This theorem is referenced by:  iccntr  18429  ovolioo  19029  uniiccdif  19037  itgioo  19274  rollelem  19440  dvivthlem1  19459  reasinsin  20303  scvxcvx  20391  eliccioo  23382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-n0 10058  df-z 10117  df-uz 10323  df-q 10409  df-ioo 10752  df-ico 10754  df-icc 10755
  Copyright terms: Public domain W3C validator