Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-1 Structured version   Unicode version

Theorem ps-1 30448
Description: The join of two atoms  R  .\/  S (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
ps1.l  |-  .<_  =  ( le `  K )
ps1.j  |-  .\/  =  ( join `  K )
ps1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ps-1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  =  ( R  .\/  S ) ) )

Proof of Theorem ps-1
StepHypRef Expression
1 oveq1 6124 . . . . . 6  |-  ( R  =  P  ->  ( R  .\/  S )  =  ( P  .\/  S
) )
21breq2d 4255 . . . . 5  |-  ( R  =  P  ->  (
( P  .\/  Q
)  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  .<_  ( P  .\/  S ) ) )
31eqeq2d 2454 . . . . 5  |-  ( R  =  P  ->  (
( P  .\/  Q
)  =  ( R 
.\/  S )  <->  ( P  .\/  Q )  =  ( P  .\/  S ) ) )
42, 3imbi12d 313 . . . 4  |-  ( R  =  P  ->  (
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) )  <->  ( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) ) )
54eqcoms 2446 . . 3  |-  ( P  =  R  ->  (
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) )  <->  ( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) ) )
6 simp3 960 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  .<_  ( R 
.\/  S ) )
7 simp1 958 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  HL )
8 simp21 991 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  A )
9 simp3l 986 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  R  e.  A )
10 ps1.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
11 ps1.a . . . . . . . . . . . . 13  |-  A  =  ( Atoms `  K )
1210, 11hlatjcom 30339 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  =  ( R 
.\/  P ) )
137, 8, 9, 12syl3anc 1185 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  R
)  =  ( R 
.\/  P ) )
14133ad2ant1 979 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  R )  =  ( R  .\/  P ) )
15 hllat 30335 . . . . . . . . . . . . . . . 16  |-  ( K  e.  HL  ->  K  e.  Lat )
16153ad2ant1 979 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  Lat )
17 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  ( Base `  K )  =  (
Base `  K )
1817, 11atbase 30261 . . . . . . . . . . . . . . . 16  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
198, 18syl 16 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  ( Base `  K ) )
20 simp22 992 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  A )
2117, 11atbase 30261 . . . . . . . . . . . . . . . 16  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2220, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  ( Base `  K ) )
23 simp3r 987 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  S  e.  A )
2417, 10, 11hlatjcl 30338 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
257, 9, 23, 24syl3anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
26 ps1.l . . . . . . . . . . . . . . . 16  |-  .<_  =  ( le `  K )
2717, 26, 10latjle12 14529 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
2816, 19, 22, 25, 27syl13anc 1187 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
29 simpl 445 . . . . . . . . . . . . . 14  |-  ( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R  .\/  S
) )  ->  P  .<_  ( R  .\/  S
) )
3028, 29syl6bir 222 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  P  .<_  ( R  .\/  S
) ) )
3130adantr 453 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  P  .<_  ( R  .\/  S
) ) )
32 simpl1 961 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  K  e.  HL )
33 simpl21 1036 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  P  e.  A )
34 simpl3r 1014 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  S  e.  A )
35 simpl3l 1013 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  R  e.  A )
36 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  P  =/=  R )
3726, 10, 11hlatexchb1 30364 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  R  e.  A
)  /\  P  =/=  R )  ->  ( P  .<_  ( R  .\/  S
)  <->  ( R  .\/  P )  =  ( R 
.\/  S ) ) )
3832, 33, 34, 35, 36, 37syl131anc 1198 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( P  .<_  ( R 
.\/  S )  <->  ( R  .\/  P )  =  ( R  .\/  S ) ) )
3931, 38sylibd 207 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( R  .\/  P )  =  ( R  .\/  S
) ) )
40393impia 1151 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( R  .\/  P )  =  ( R  .\/  S ) )
4114, 40eqtrd 2475 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  R )  =  ( R  .\/  S ) )
426, 41breqtrrd 4269 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  .<_  ( P 
.\/  R ) )
43423expia 1156 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  .<_  ( P  .\/  R ) ) )
4417, 10, 11hlatjcl 30338 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
457, 8, 9, 44syl3anc 1185 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  R
)  e.  ( Base `  K ) )
4617, 26, 10latjle12 14529 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  R ) ) )
4716, 19, 22, 45, 46syl13anc 1187 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  R ) ) )
48 simpr 449 . . . . . . . . . 10  |-  ( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P  .\/  R
) )  ->  Q  .<_  ( P  .\/  R
) )
49 simp23 993 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  =/=  Q )
5049necomd 2694 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  =/=  P )
5126, 10, 11hlatexchb1 30364 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  Q  =/=  P )  ->  ( Q  .<_  ( P  .\/  R
)  <->  ( P  .\/  Q )  =  ( P 
.\/  R ) ) )
527, 20, 9, 8, 50, 51syl131anc 1198 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( Q  .<_  ( P 
.\/  R )  <->  ( P  .\/  Q )  =  ( P  .\/  R ) ) )
5348, 52syl5ib 212 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  ->  ( P  .\/  Q )  =  ( P 
.\/  R ) ) )
5447, 53sylbird 228 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  R )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
5554adantr 453 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  R )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
5643, 55syld 43 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
57563impia 1151 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )
5857, 41eqtrd 2475 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  =  ( R  .\/  S ) )
59583expia 1156 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) ) )
6017, 10, 11hlatjcl 30338 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
617, 8, 23, 60syl3anc 1185 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  S
)  e.  ( Base `  K ) )
6217, 26, 10latjle12 14529 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  S ) ) )
6316, 19, 22, 61, 62syl13anc 1187 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  S ) ) )
64 simpr 449 . . . . 5  |-  ( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P  .\/  S
) )  ->  Q  .<_  ( P  .\/  S
) )
6563, 64syl6bir 222 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  Q  .<_  ( P  .\/  S
) ) )
6626, 10, 11hlatexchb1 30364 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  S  e.  A  /\  P  e.  A
)  /\  Q  =/=  P )  ->  ( Q  .<_  ( P  .\/  S
)  <->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) )
677, 20, 23, 8, 50, 66syl131anc 1198 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( Q  .<_  ( P 
.\/  S )  <->  ( P  .\/  Q )  =  ( P  .\/  S ) ) )
6865, 67sylibd 207 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P  .\/  S
) ) )
695, 59, 68pm2.61ne 2686 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) ) )
7017, 10, 11hlatjcl 30338 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
717, 8, 20, 70syl3anc 1185 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
7217, 26latref 14520 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  .<_  ( P  .\/  Q ) )
7316, 71, 72syl2anc 644 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  Q
)  .<_  ( P  .\/  Q ) )
74 breq2 4247 . . 3  |-  ( ( P  .\/  Q )  =  ( R  .\/  S )  ->  ( ( P  .\/  Q )  .<_  ( P  .\/  Q )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
7573, 74syl5ibcom 213 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  =  ( R 
.\/  S )  -> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
7669, 75impbid 185 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  =  ( R  .\/  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1654    e. wcel 1728    =/= wne 2606   class class class wbr 4243   ` cfv 5489  (class class class)co 6117   Basecbs 13507   lecple 13574   joincjn 14439   Latclat 14512   Atomscatm 30235   HLchlt 30322
This theorem is referenced by:  2atjlej  30450  hlatexch3N  30451  hlatexch4  30452  2llnjaN  30537  dalem1  30630  lneq2at  30749  2llnma3r  30759  cdleme11c  31232  cdleme11  31241  cdleme35a  31419  cdleme42k  31455  cdlemg8b  31599  cdlemg13a  31622  cdlemg18b  31650  cdlemg42  31700  trljco  31711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-undef 6579  df-riota 6585  df-poset 14441  df-plt 14453  df-lub 14469  df-join 14471  df-lat 14513  df-covers 30238  df-ats 30239  df-atl 30270  df-cvlat 30294  df-hlat 30323
  Copyright terms: Public domain W3C validator