Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-1 Unicode version

Theorem ps-1 30113
Description: The join of two atoms  R  .\/  S (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
ps1.l  |-  .<_  =  ( le `  K )
ps1.j  |-  .\/  =  ( join `  K )
ps1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ps-1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  =  ( R  .\/  S ) ) )

Proof of Theorem ps-1
StepHypRef Expression
1 oveq1 6079 . . . . . 6  |-  ( R  =  P  ->  ( R  .\/  S )  =  ( P  .\/  S
) )
21breq2d 4216 . . . . 5  |-  ( R  =  P  ->  (
( P  .\/  Q
)  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  .<_  ( P  .\/  S ) ) )
31eqeq2d 2446 . . . . 5  |-  ( R  =  P  ->  (
( P  .\/  Q
)  =  ( R 
.\/  S )  <->  ( P  .\/  Q )  =  ( P  .\/  S ) ) )
42, 3imbi12d 312 . . . 4  |-  ( R  =  P  ->  (
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) )  <->  ( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) ) )
54eqcoms 2438 . . 3  |-  ( P  =  R  ->  (
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) )  <->  ( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) ) )
6 simp3 959 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  .<_  ( R 
.\/  S ) )
7 simp1 957 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  HL )
8 simp21 990 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  A )
9 simp3l 985 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  R  e.  A )
10 ps1.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
11 ps1.a . . . . . . . . . . . . 13  |-  A  =  ( Atoms `  K )
1210, 11hlatjcom 30004 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  =  ( R 
.\/  P ) )
137, 8, 9, 12syl3anc 1184 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  R
)  =  ( R 
.\/  P ) )
14133ad2ant1 978 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  R )  =  ( R  .\/  P ) )
15 hllat 30000 . . . . . . . . . . . . . . . 16  |-  ( K  e.  HL  ->  K  e.  Lat )
16153ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  Lat )
17 eqid 2435 . . . . . . . . . . . . . . . . 17  |-  ( Base `  K )  =  (
Base `  K )
1817, 11atbase 29926 . . . . . . . . . . . . . . . 16  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
198, 18syl 16 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  ( Base `  K ) )
20 simp22 991 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  A )
2117, 11atbase 29926 . . . . . . . . . . . . . . . 16  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2220, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  ( Base `  K ) )
23 simp3r 986 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  S  e.  A )
2417, 10, 11hlatjcl 30003 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
257, 9, 23, 24syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
26 ps1.l . . . . . . . . . . . . . . . 16  |-  .<_  =  ( le `  K )
2717, 26, 10latjle12 14479 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
2816, 19, 22, 25, 27syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
29 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R  .\/  S
) )  ->  P  .<_  ( R  .\/  S
) )
3028, 29syl6bir 221 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  P  .<_  ( R  .\/  S
) ) )
3130adantr 452 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  P  .<_  ( R  .\/  S
) ) )
32 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  K  e.  HL )
33 simpl21 1035 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  P  e.  A )
34 simpl3r 1013 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  S  e.  A )
35 simpl3l 1012 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  R  e.  A )
36 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  P  =/=  R )
3726, 10, 11hlatexchb1 30029 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  R  e.  A
)  /\  P  =/=  R )  ->  ( P  .<_  ( R  .\/  S
)  <->  ( R  .\/  P )  =  ( R 
.\/  S ) ) )
3832, 33, 34, 35, 36, 37syl131anc 1197 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( P  .<_  ( R 
.\/  S )  <->  ( R  .\/  P )  =  ( R  .\/  S ) ) )
3931, 38sylibd 206 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( R  .\/  P )  =  ( R  .\/  S
) ) )
40393impia 1150 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( R  .\/  P )  =  ( R  .\/  S ) )
4114, 40eqtrd 2467 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  R )  =  ( R  .\/  S ) )
426, 41breqtrrd 4230 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  .<_  ( P 
.\/  R ) )
43423expia 1155 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  .<_  ( P  .\/  R ) ) )
4417, 10, 11hlatjcl 30003 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
457, 8, 9, 44syl3anc 1184 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  R
)  e.  ( Base `  K ) )
4617, 26, 10latjle12 14479 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  R ) ) )
4716, 19, 22, 45, 46syl13anc 1186 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  R ) ) )
48 simpr 448 . . . . . . . . . 10  |-  ( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P  .\/  R
) )  ->  Q  .<_  ( P  .\/  R
) )
49 simp23 992 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  =/=  Q )
5049necomd 2681 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  =/=  P )
5126, 10, 11hlatexchb1 30029 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  Q  =/=  P )  ->  ( Q  .<_  ( P  .\/  R
)  <->  ( P  .\/  Q )  =  ( P 
.\/  R ) ) )
527, 20, 9, 8, 50, 51syl131anc 1197 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( Q  .<_  ( P 
.\/  R )  <->  ( P  .\/  Q )  =  ( P  .\/  R ) ) )
5348, 52syl5ib 211 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  ->  ( P  .\/  Q )  =  ( P 
.\/  R ) ) )
5447, 53sylbird 227 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  R )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
5554adantr 452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  R )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
5643, 55syld 42 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
57563impia 1150 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )
5857, 41eqtrd 2467 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  =  ( R  .\/  S ) )
59583expia 1155 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) ) )
6017, 10, 11hlatjcl 30003 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
617, 8, 23, 60syl3anc 1184 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  S
)  e.  ( Base `  K ) )
6217, 26, 10latjle12 14479 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  S ) ) )
6316, 19, 22, 61, 62syl13anc 1186 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  S ) ) )
64 simpr 448 . . . . 5  |-  ( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P  .\/  S
) )  ->  Q  .<_  ( P  .\/  S
) )
6563, 64syl6bir 221 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  Q  .<_  ( P  .\/  S
) ) )
6626, 10, 11hlatexchb1 30029 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  S  e.  A  /\  P  e.  A
)  /\  Q  =/=  P )  ->  ( Q  .<_  ( P  .\/  S
)  <->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) )
677, 20, 23, 8, 50, 66syl131anc 1197 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( Q  .<_  ( P 
.\/  S )  <->  ( P  .\/  Q )  =  ( P  .\/  S ) ) )
6865, 67sylibd 206 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P  .\/  S
) ) )
695, 59, 68pm2.61ne 2673 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) ) )
7017, 10, 11hlatjcl 30003 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
717, 8, 20, 70syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
7217, 26latref 14470 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  .<_  ( P  .\/  Q ) )
7316, 71, 72syl2anc 643 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  Q
)  .<_  ( P  .\/  Q ) )
74 breq2 4208 . . 3  |-  ( ( P  .\/  Q )  =  ( R  .\/  S )  ->  ( ( P  .\/  Q )  .<_  ( P  .\/  Q )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
7573, 74syl5ibcom 212 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  =  ( R 
.\/  S )  -> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
7669, 75impbid 184 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  =  ( R  .\/  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   Basecbs 13457   lecple 13524   joincjn 14389   Latclat 14462   Atomscatm 29900   HLchlt 29987
This theorem is referenced by:  2atjlej  30115  hlatexch3N  30116  hlatexch4  30117  2llnjaN  30202  dalem1  30295  lneq2at  30414  2llnma3r  30424  cdleme11c  30897  cdleme11  30906  cdleme35a  31084  cdleme42k  31120  cdlemg8b  31264  cdlemg13a  31287  cdlemg18b  31315  cdlemg42  31365  trljco  31376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-poset 14391  df-plt 14403  df-lub 14419  df-join 14421  df-lat 14463  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988
  Copyright terms: Public domain W3C validator