MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval Unicode version

Theorem pserval 19713
Description: Value of the function  G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
Assertion
Ref Expression
pserval  |-  ( X  e.  CC  ->  ( G `  X )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
Distinct variable groups:    m, n, x, A    m, X    m, G
Allowed substitution hints:    G( x, n)    X( x, n)

Proof of Theorem pserval
StepHypRef Expression
1 oveq1 5764 . . . 4  |-  ( y  =  X  ->  (
y ^ m )  =  ( X ^
m ) )
21oveq2d 5773 . . 3  |-  ( y  =  X  ->  (
( A `  m
)  x.  ( y ^ m ) )  =  ( ( A `
 m )  x.  ( X ^ m
) ) )
32mpteq2dv 4047 . 2  |-  ( y  =  X  ->  (
m  e.  NN0  |->  ( ( A `  m )  x.  ( y ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
4 pser.g . . 3  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
5 fveq2 5423 . . . . . . 7  |-  ( n  =  m  ->  ( A `  n )  =  ( A `  m ) )
6 oveq2 5765 . . . . . . 7  |-  ( n  =  m  ->  (
x ^ n )  =  ( x ^
m ) )
75, 6oveq12d 5775 . . . . . 6  |-  ( n  =  m  ->  (
( A `  n
)  x.  ( x ^ n ) )  =  ( ( A `
 m )  x.  ( x ^ m
) ) )
87cbvmptv 4051 . . . . 5  |-  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( x ^ m
) ) )
9 oveq1 5764 . . . . . . 7  |-  ( x  =  y  ->  (
x ^ m )  =  ( y ^
m ) )
109oveq2d 5773 . . . . . 6  |-  ( x  =  y  ->  (
( A `  m
)  x.  ( x ^ m ) )  =  ( ( A `
 m )  x.  ( y ^ m
) ) )
1110mpteq2dv 4047 . . . . 5  |-  ( x  =  y  ->  (
m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( y ^ m
) ) ) )
128, 11syl5eq 2300 . . . 4  |-  ( x  =  y  ->  (
n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( y ^ m
) ) ) )
1312cbvmptv 4051 . . 3  |-  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) ) )  =  ( y  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( y ^
m ) ) ) )
144, 13eqtri 2276 . 2  |-  G  =  ( y  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  (
y ^ m ) ) ) )
15 nn0ex 9903 . . 3  |-  NN0  e.  _V
1615mptex 5645 . 2  |-  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( X ^
m ) ) )  e.  _V
173, 14, 16fvmpt 5501 1  |-  ( X  e.  CC  ->  ( G `  X )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    e. cmpt 4017   ` cfv 4638  (class class class)co 5757   CCcc 8668    x. cmul 8675   NN0cn0 9897   ^cexp 11035
This theorem is referenced by:  pserval2  19714  psergf  19715
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-i2m1 8738  ax-1ne0 8739  ax-rrecex 8742  ax-cnre 8743
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-recs 6321  df-rdg 6356  df-n 9680  df-n0 9898
  Copyright terms: Public domain W3C validator