MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval Unicode version

Theorem pserval 19618
Description: Value of the function  G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
Assertion
Ref Expression
pserval  |-  ( X  e.  CC  ->  ( G `  X )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
Distinct variable groups:    m, n, x, A    m, X    m, G
Allowed substitution hints:    G( x, n)    X( x, n)

Proof of Theorem pserval
StepHypRef Expression
1 oveq1 5717 . . . 4  |-  ( y  =  X  ->  (
y ^ m )  =  ( X ^
m ) )
21oveq2d 5726 . . 3  |-  ( y  =  X  ->  (
( A `  m
)  x.  ( y ^ m ) )  =  ( ( A `
 m )  x.  ( X ^ m
) ) )
32mpteq2dv 4004 . 2  |-  ( y  =  X  ->  (
m  e.  NN0  |->  ( ( A `  m )  x.  ( y ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
4 pser.g . . 3  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
5 fveq2 5377 . . . . . . 7  |-  ( n  =  m  ->  ( A `  n )  =  ( A `  m ) )
6 oveq2 5718 . . . . . . 7  |-  ( n  =  m  ->  (
x ^ n )  =  ( x ^
m ) )
75, 6oveq12d 5728 . . . . . 6  |-  ( n  =  m  ->  (
( A `  n
)  x.  ( x ^ n ) )  =  ( ( A `
 m )  x.  ( x ^ m
) ) )
87cbvmptv 4008 . . . . 5  |-  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( x ^ m
) ) )
9 oveq1 5717 . . . . . . 7  |-  ( x  =  y  ->  (
x ^ m )  =  ( y ^
m ) )
109oveq2d 5726 . . . . . 6  |-  ( x  =  y  ->  (
( A `  m
)  x.  ( x ^ m ) )  =  ( ( A `
 m )  x.  ( y ^ m
) ) )
1110mpteq2dv 4004 . . . . 5  |-  ( x  =  y  ->  (
m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( y ^ m
) ) ) )
128, 11syl5eq 2297 . . . 4  |-  ( x  =  y  ->  (
n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( y ^ m
) ) ) )
1312cbvmptv 4008 . . 3  |-  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) ) )  =  ( y  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( y ^
m ) ) ) )
144, 13eqtri 2273 . 2  |-  G  =  ( y  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  (
y ^ m ) ) ) )
15 nn0ex 9850 . . 3  |-  NN0  e.  _V
1615mptex 5598 . 2  |-  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( X ^
m ) ) )  e.  _V
173, 14, 16fvmpt 5454 1  |-  ( X  e.  CC  ->  ( G `  X )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( X ^ m
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   CCcc 8615    x. cmul 8622   NN0cn0 9844   ^cexp 10982
This theorem is referenced by:  pserval2  19619  psergf  19620
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-i2m1 8685  ax-1ne0 8686  ax-rrecex 8689  ax-cnre 8690
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-recs 6274  df-rdg 6309  df-n 9627  df-n0 9845
  Copyright terms: Public domain W3C validator