Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnunilem1 Unicode version

Theorem psgnunilem1 27331
Description: Lemma for psgnuni 27337. Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem1.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem1.d  |-  ( ph  ->  D  e.  V )
psgnunilem1.p  |-  ( ph  ->  P  e.  T )
psgnunilem1.q  |-  ( ph  ->  Q  e.  T )
psgnunilem1.a  |-  ( ph  ->  A  e.  dom  ( P  \  _I  ) )
Assertion
Ref Expression
psgnunilem1  |-  ( ph  ->  ( ( P  o.  Q )  =  (  _I  |`  D )  \/  E. r  e.  T  E. s  e.  T  ( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )
Distinct variable groups:    s, r, A    P, r, s    Q, r, s    T, r, s
Allowed substitution hints:    ph( s, r)    D( s, r)    V( s, r)

Proof of Theorem psgnunilem1
StepHypRef Expression
1 psgnunilem1.q . . . . . . . 8  |-  ( ph  ->  Q  e.  T )
2 eqid 2435 . . . . . . . . 9  |-  (pmTrsp `  D )  =  (pmTrsp `  D )
3 psgnunilem1.t . . . . . . . . 9  |-  T  =  ran  (pmTrsp `  D
)
42, 3pmtrfinv 27317 . . . . . . . 8  |-  ( Q  e.  T  ->  ( Q  o.  Q )  =  (  _I  |`  D ) )
51, 4syl 16 . . . . . . 7  |-  ( ph  ->  ( Q  o.  Q
)  =  (  _I  |`  D ) )
6 coeq1 5021 . . . . . . . 8  |-  ( P  =  Q  ->  ( P  o.  Q )  =  ( Q  o.  Q ) )
76eqeq1d 2443 . . . . . . 7  |-  ( P  =  Q  ->  (
( P  o.  Q
)  =  (  _I  |`  D )  <->  ( Q  o.  Q )  =  (  _I  |`  D )
) )
85, 7syl5ibrcom 214 . . . . . 6  |-  ( ph  ->  ( P  =  Q  ->  ( P  o.  Q )  =  (  _I  |`  D )
) )
98adantr 452 . . . . 5  |-  ( (
ph  /\  A  e.  dom  ( Q  \  _I  ) )  ->  ( P  =  Q  ->  ( P  o.  Q )  =  (  _I  |`  D ) ) )
109imp 419 . . . 4  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =  Q )  ->  ( P  o.  Q )  =  (  _I  |`  D ) )
1110orcd 382 . . 3  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =  Q )  ->  (
( P  o.  Q
)  =  (  _I  |`  D )  \/  E. r  e.  T  E. s  e.  T  (
( P  o.  Q
)  =  ( r  o.  s )  /\  A  e.  dom  ( s 
\  _I  )  /\  -.  A  e.  dom  ( r  \  _I  ) ) ) )
12 psgnunilem1.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  T )
132, 3pmtrfcnv 27320 . . . . . . . . . 10  |-  ( P  e.  T  ->  `' P  =  P )
1412, 13syl 16 . . . . . . . . 9  |-  ( ph  ->  `' P  =  P
)
1514eqcomd 2440 . . . . . . . 8  |-  ( ph  ->  P  =  `' P
)
1615coeq2d 5026 . . . . . . 7  |-  ( ph  ->  ( ( P  o.  Q )  o.  P
)  =  ( ( P  o.  Q )  o.  `' P ) )
172, 3pmtrff1o 27319 . . . . . . . . 9  |-  ( P  e.  T  ->  P : D -1-1-onto-> D )
1812, 17syl 16 . . . . . . . 8  |-  ( ph  ->  P : D -1-1-onto-> D )
192, 3pmtrfconj 27322 . . . . . . . 8  |-  ( ( Q  e.  T  /\  P : D -1-1-onto-> D )  ->  (
( P  o.  Q
)  o.  `' P
)  e.  T )
201, 18, 19syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( P  o.  Q )  o.  `' P )  e.  T
)
2116, 20eqeltrd 2509 . . . . . 6  |-  ( ph  ->  ( ( P  o.  Q )  o.  P
)  e.  T )
2221ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  (
( P  o.  Q
)  o.  P )  e.  T )
2312ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  P  e.  T )
24 coass 5379 . . . . . . 7  |-  ( ( ( P  o.  Q
)  o.  P )  o.  P )  =  ( ( P  o.  Q )  o.  ( P  o.  P )
)
252, 3pmtrfinv 27317 . . . . . . . . . 10  |-  ( P  e.  T  ->  ( P  o.  P )  =  (  _I  |`  D ) )
2612, 25syl 16 . . . . . . . . 9  |-  ( ph  ->  ( P  o.  P
)  =  (  _I  |`  D ) )
2726coeq2d 5026 . . . . . . . 8  |-  ( ph  ->  ( ( P  o.  Q )  o.  ( P  o.  P )
)  =  ( ( P  o.  Q )  o.  (  _I  |`  D ) ) )
28 f1of 5665 . . . . . . . . . . 11  |-  ( P : D -1-1-onto-> D  ->  P : D
--> D )
2918, 28syl 16 . . . . . . . . . 10  |-  ( ph  ->  P : D --> D )
302, 3pmtrff1o 27319 . . . . . . . . . . . 12  |-  ( Q  e.  T  ->  Q : D -1-1-onto-> D )
311, 30syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Q : D -1-1-onto-> D )
32 f1of 5665 . . . . . . . . . . 11  |-  ( Q : D -1-1-onto-> D  ->  Q : D
--> D )
3331, 32syl 16 . . . . . . . . . 10  |-  ( ph  ->  Q : D --> D )
34 fco 5591 . . . . . . . . . 10  |-  ( ( P : D --> D  /\  Q : D --> D )  ->  ( P  o.  Q ) : D --> D )
3529, 33, 34syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( P  o.  Q
) : D --> D )
36 fcoi1 5608 . . . . . . . . 9  |-  ( ( P  o.  Q ) : D --> D  -> 
( ( P  o.  Q )  o.  (  _I  |`  D ) )  =  ( P  o.  Q ) )
3735, 36syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( P  o.  Q )  o.  (  _I  |`  D ) )  =  ( P  o.  Q ) )
3827, 37eqtrd 2467 . . . . . . 7  |-  ( ph  ->  ( ( P  o.  Q )  o.  ( P  o.  P )
)  =  ( P  o.  Q ) )
3924, 38syl5req 2480 . . . . . 6  |-  ( ph  ->  ( P  o.  Q
)  =  ( ( ( P  o.  Q
)  o.  P )  o.  P ) )
4039ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  ( P  o.  Q )  =  ( ( ( P  o.  Q )  o.  P )  o.  P ) )
41 psgnunilem1.a . . . . . 6  |-  ( ph  ->  A  e.  dom  ( P  \  _I  ) )
4241ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  A  e.  dom  ( P  \  _I  ) )
4318adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  P : D -1-1-onto-> D )
4431adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  Q : D -1-1-onto-> D )
452, 3pmtrfb 27321 . . . . . . . . . . . . 13  |-  ( P  e.  T  <->  ( D  e.  _V  /\  P : D
-1-1-onto-> D  /\  dom  ( P 
\  _I  )  ~~  2o ) )
4645simp3bi 974 . . . . . . . . . . . 12  |-  ( P  e.  T  ->  dom  ( P  \  _I  )  ~~  2o )
4712, 46syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( P  \  _I  )  ~~  2o )
4847adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  dom  ( P  \  _I  )  ~~  2o )
49 2onn 6874 . . . . . . . . . . . . . . 15  |-  2o  e.  om
50 nnfi 7290 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  om  ->  2o  e.  Fin )
5149, 50ax-mp 8 . . . . . . . . . . . . . 14  |-  2o  e.  Fin
522, 3pmtrfb 27321 . . . . . . . . . . . . . . . . 17  |-  ( Q  e.  T  <->  ( D  e.  _V  /\  Q : D
-1-1-onto-> D  /\  dom  ( Q 
\  _I  )  ~~  2o ) )
5352simp3bi 974 . . . . . . . . . . . . . . . 16  |-  ( Q  e.  T  ->  dom  ( Q  \  _I  )  ~~  2o )
541, 53syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( Q  \  _I  )  ~~  2o )
55 enfi 7316 . . . . . . . . . . . . . . 15  |-  ( dom  ( Q  \  _I  )  ~~  2o  ->  ( dom  ( Q  \  _I  )  e.  Fin  <->  2o  e.  Fin ) )
5654, 55syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( dom  ( Q 
\  _I  )  e. 
Fin 
<->  2o  e.  Fin )
)
5751, 56mpbiri 225 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( Q  \  _I  )  e.  Fin )
5857adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  dom  ( Q  \  _I  )  e.  Fin )
5941adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  A  e.  dom  ( P 
\  _I  ) )
60 en2eleq 27296 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  ( P  \  _I  )  /\  dom  ( P  \  _I  )  ~~  2o )  ->  dom  ( P  \  _I  )  =  { A ,  U. ( dom  ( P  \  _I  )  \  { A } ) } )
6159, 48, 60syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  dom  ( P  \  _I  )  =  { A ,  U. ( dom  ( P  \  _I  )  \  { A } ) } )
62 simprl 733 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  A  e.  dom  ( Q 
\  _I  ) )
63 f1ofn 5666 . . . . . . . . . . . . . . . . . 18  |-  ( P : D -1-1-onto-> D  ->  P  Fn  D )
6418, 63syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  P  Fn  D )
6564adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  P  Fn  D )
66 imassrn 5207 . . . . . . . . . . . . . . . . . . 19  |-  ( P
" dom  ( Q  \  _I  ) )  C_  ran  P
67 frn 5588 . . . . . . . . . . . . . . . . . . 19  |-  ( P : D --> D  ->  ran  P  C_  D )
6866, 67syl5ss 3351 . . . . . . . . . . . . . . . . . 18  |-  ( P : D --> D  -> 
( P " dom  ( Q  \  _I  )
)  C_  D )
6929, 68syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( P " dom  ( Q  \  _I  )
)  C_  D )
7069adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  -> 
( P " dom  ( Q  \  _I  )
)  C_  D )
71 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  A  e.  ( P " dom  ( Q  \  _I  ) ) )
72 fnfvima 5967 . . . . . . . . . . . . . . . 16  |-  ( ( P  Fn  D  /\  ( P " dom  ( Q  \  _I  ) ) 
C_  D  /\  A  e.  ( P " dom  ( Q  \  _I  )
) )  ->  ( P `  A )  e.  ( P " ( P " dom  ( Q 
\  _I  ) ) ) )
7365, 70, 71, 72syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  -> 
( P `  A
)  e.  ( P
" ( P " dom  ( Q  \  _I  ) ) ) )
74 difss 3466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P 
\  _I  )  C_  P
75 dmss 5060 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  \  _I  )  C_  P  ->  dom  ( P 
\  _I  )  C_  dom  P )
7674, 75ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  dom  ( P  \  _I  )  C_  dom  P
77 f1odm 5669 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P : D -1-1-onto-> D  ->  dom  P  =  D )
7818, 77syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  P  =  D )
7976, 78syl5sseq 3388 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  dom  ( P  \  _I  )  C_  D )
8079, 41sseldd 3341 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  D )
81 eqid 2435 . . . . . . . . . . . . . . . . . . 19  |-  dom  ( P  \  _I  )  =  dom  ( P  \  _I  )
822, 3, 81pmtrffv 27316 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  T  /\  A  e.  D )  ->  ( P `  A
)  =  if ( A  e.  dom  ( P  \  _I  ) , 
U. ( dom  ( P  \  _I  )  \  { A } ) ,  A ) )
8312, 80, 82syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( P `  A
)  =  if ( A  e.  dom  ( P  \  _I  ) , 
U. ( dom  ( P  \  _I  )  \  { A } ) ,  A ) )
84 iftrue 3737 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  dom  ( P 
\  _I  )  ->  if ( A  e.  dom  ( P  \  _I  ) ,  U. ( dom  ( P  \  _I  )  \  { A } ) ,  A )  =  U. ( dom  ( P  \  _I  )  \  { A } ) )
8541, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  if ( A  e. 
dom  ( P  \  _I  ) ,  U. ( dom  ( P  \  _I  )  \  { A }
) ,  A )  =  U. ( dom  ( P  \  _I  )  \  { A }
) )
8683, 85eqtrd 2467 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P `  A
)  =  U. ( dom  ( P  \  _I  )  \  { A }
) )
8786adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  -> 
( P `  A
)  =  U. ( dom  ( P  \  _I  )  \  { A }
) )
88 imaco 5366 . . . . . . . . . . . . . . . . 17  |-  ( ( P  o.  P )
" dom  ( Q  \  _I  ) )  =  ( P " ( P " dom  ( Q 
\  _I  ) ) )
8926imaeq1d 5193 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( P  o.  P ) " dom  ( Q  \  _I  )
)  =  ( (  _I  |`  D ) " dom  ( Q  \  _I  ) ) )
90 difss 3466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Q 
\  _I  )  C_  Q
91 dmss 5060 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Q  \  _I  )  C_  Q  ->  dom  ( Q 
\  _I  )  C_  dom  Q )
9290, 91ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  dom  ( Q  \  _I  )  C_  dom  Q
93 f1odm 5669 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Q : D -1-1-onto-> D  ->  dom  Q  =  D )
9492, 93syl5sseq 3388 . . . . . . . . . . . . . . . . . . . 20  |-  ( Q : D -1-1-onto-> D  ->  dom  ( Q 
\  _I  )  C_  D )
9531, 94syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  dom  ( Q  \  _I  )  C_  D )
96 resiima 5211 . . . . . . . . . . . . . . . . . . 19  |-  ( dom  ( Q  \  _I  )  C_  D  ->  (
(  _I  |`  D )
" dom  ( Q  \  _I  ) )  =  dom  ( Q  \  _I  ) )
9795, 96syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( (  _I  |`  D )
" dom  ( Q  \  _I  ) )  =  dom  ( Q  \  _I  ) )
9889, 97eqtrd 2467 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( P  o.  P ) " dom  ( Q  \  _I  )
)  =  dom  ( Q  \  _I  ) )
9988, 98syl5eqr 2481 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P " ( P " dom  ( Q 
\  _I  ) ) )  =  dom  ( Q  \  _I  ) )
10099adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  -> 
( P " ( P " dom  ( Q 
\  _I  ) ) )  =  dom  ( Q  \  _I  ) )
10173, 87, 1003eltr3d 2515 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  U. ( dom  ( P 
\  _I  )  \  { A } )  e. 
dom  ( Q  \  _I  ) )
102 prssi 3946 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  ( Q  \  _I  )  /\  U. ( dom  ( P 
\  _I  )  \  { A } )  e. 
dom  ( Q  \  _I  ) )  ->  { A ,  U. ( dom  ( P  \  _I  )  \  { A } ) } 
C_  dom  ( Q  \  _I  ) )
10362, 101, 102syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  { A ,  U. ( dom  ( P  \  _I  )  \  { A }
) }  C_  dom  ( Q  \  _I  )
)
10461, 103eqsstrd 3374 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  dom  ( P  \  _I  )  C_  dom  ( Q 
\  _I  ) )
10554ensymd 7149 . . . . . . . . . . . . . 14  |-  ( ph  ->  2o  ~~  dom  ( Q  \  _I  ) )
106 entr 7150 . . . . . . . . . . . . . 14  |-  ( ( dom  ( P  \  _I  )  ~~  2o  /\  2o  ~~  dom  ( Q 
\  _I  ) )  ->  dom  ( P  \  _I  )  ~~  dom  ( Q  \  _I  )
)
10747, 105, 106syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( P  \  _I  )  ~~  dom  ( Q  \  _I  ) )
108107adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  dom  ( P  \  _I  )  ~~  dom  ( Q 
\  _I  ) )
109 fisseneq 7311 . . . . . . . . . . . 12  |-  ( ( dom  ( Q  \  _I  )  e.  Fin  /\ 
dom  ( P  \  _I  )  C_  dom  ( Q  \  _I  )  /\  dom  ( P  \  _I  )  ~~  dom  ( Q 
\  _I  ) )  ->  dom  ( P  \  _I  )  =  dom  ( Q  \  _I  )
)
11058, 104, 108, 109syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  dom  ( P  \  _I  )  =  dom  ( Q 
\  _I  ) )
111110eqcomd 2440 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  dom  ( Q  \  _I  )  =  dom  ( P 
\  _I  ) )
112 f1otrspeq 27305 . . . . . . . . . 10  |-  ( ( ( P : D -1-1-onto-> D  /\  Q : D -1-1-onto-> D )  /\  ( dom  ( P  \  _I  )  ~~  2o  /\  dom  ( Q 
\  _I  )  =  dom  ( P  \  _I  ) ) )  ->  P  =  Q )
11343, 44, 48, 111, 112syl22anc 1185 . . . . . . . . 9  |-  ( (
ph  /\  ( A  e.  dom  ( Q  \  _I  )  /\  A  e.  ( P " dom  ( Q  \  _I  )
) ) )  ->  P  =  Q )
114113expr 599 . . . . . . . 8  |-  ( (
ph  /\  A  e.  dom  ( Q  \  _I  ) )  ->  ( A  e.  ( P " dom  ( Q  \  _I  ) )  ->  P  =  Q ) )
115114necon3ad 2634 . . . . . . 7  |-  ( (
ph  /\  A  e.  dom  ( Q  \  _I  ) )  ->  ( P  =/=  Q  ->  -.  A  e.  ( P " dom  ( Q  \  _I  ) ) ) )
116115imp 419 . . . . . 6  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  -.  A  e.  ( P " dom  ( Q  \  _I  ) ) )
11716difeq1d 3456 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P  o.  Q )  o.  P )  \  _I  )  =  ( (
( P  o.  Q
)  o.  `' P
)  \  _I  )
)
118117dmeqd 5063 . . . . . . . . 9  |-  ( ph  ->  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  )  =  dom  ( ( ( P  o.  Q )  o.  `' P )  \  _I  ) )
119 f1omvdconj 27304 . . . . . . . . . 10  |-  ( ( Q : D --> D  /\  P : D -1-1-onto-> D )  ->  dom  ( ( ( P  o.  Q )  o.  `' P )  \  _I  )  =  ( P " dom  ( Q  \  _I  ) ) )
12033, 18, 119syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  dom  ( ( ( P  o.  Q )  o.  `' P ) 
\  _I  )  =  ( P " dom  ( Q  \  _I  )
) )
121118, 120eqtrd 2467 . . . . . . . 8  |-  ( ph  ->  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  )  =  ( P " dom  ( Q 
\  _I  ) ) )
122121eleq2d 2502 . . . . . . 7  |-  ( ph  ->  ( A  e.  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  ) 
<->  A  e.  ( P
" dom  ( Q  \  _I  ) ) ) )
123122ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  ( A  e.  dom  ( ( ( P  o.  Q
)  o.  P ) 
\  _I  )  <->  A  e.  ( P " dom  ( Q  \  _I  ) ) ) )
124116, 123mtbird 293 . . . . 5  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  -.  A  e.  dom  ( ( ( P  o.  Q
)  o.  P ) 
\  _I  ) )
125 coeq1 5021 . . . . . . . 8  |-  ( r  =  ( ( P  o.  Q )  o.  P )  ->  (
r  o.  s )  =  ( ( ( P  o.  Q )  o.  P )  o.  s ) )
126125eqeq2d 2446 . . . . . . 7  |-  ( r  =  ( ( P  o.  Q )  o.  P )  ->  (
( P  o.  Q
)  =  ( r  o.  s )  <->  ( P  o.  Q )  =  ( ( ( P  o.  Q )  o.  P
)  o.  s ) ) )
127 difeq1 3450 . . . . . . . . . 10  |-  ( r  =  ( ( P  o.  Q )  o.  P )  ->  (
r  \  _I  )  =  ( ( ( P  o.  Q )  o.  P )  \  _I  ) )
128127dmeqd 5063 . . . . . . . . 9  |-  ( r  =  ( ( P  o.  Q )  o.  P )  ->  dom  ( r  \  _I  )  =  dom  ( ( ( P  o.  Q
)  o.  P ) 
\  _I  ) )
129128eleq2d 2502 . . . . . . . 8  |-  ( r  =  ( ( P  o.  Q )  o.  P )  ->  ( A  e.  dom  ( r 
\  _I  )  <->  A  e.  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  ) ) )
130129notbid 286 . . . . . . 7  |-  ( r  =  ( ( P  o.  Q )  o.  P )  ->  ( -.  A  e.  dom  ( r  \  _I  ) 
<->  -.  A  e.  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  ) ) )
131126, 1303anbi13d 1256 . . . . . 6  |-  ( r  =  ( ( P  o.  Q )  o.  P )  ->  (
( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) )  <->  ( ( P  o.  Q )  =  ( ( ( P  o.  Q )  o.  P )  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e.  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  ) ) ) )
132 coeq2 5022 . . . . . . . 8  |-  ( s  =  P  ->  (
( ( P  o.  Q )  o.  P
)  o.  s )  =  ( ( ( P  o.  Q )  o.  P )  o.  P ) )
133132eqeq2d 2446 . . . . . . 7  |-  ( s  =  P  ->  (
( P  o.  Q
)  =  ( ( ( P  o.  Q
)  o.  P )  o.  s )  <->  ( P  o.  Q )  =  ( ( ( P  o.  Q )  o.  P
)  o.  P ) ) )
134 difeq1 3450 . . . . . . . . 9  |-  ( s  =  P  ->  (
s  \  _I  )  =  ( P  \  _I  ) )
135134dmeqd 5063 . . . . . . . 8  |-  ( s  =  P  ->  dom  ( s  \  _I  )  =  dom  ( P 
\  _I  ) )
136135eleq2d 2502 . . . . . . 7  |-  ( s  =  P  ->  ( A  e.  dom  ( s 
\  _I  )  <->  A  e.  dom  ( P  \  _I  ) ) )
137133, 1363anbi12d 1255 . . . . . 6  |-  ( s  =  P  ->  (
( ( P  o.  Q )  =  ( ( ( P  o.  Q )  o.  P
)  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( ( ( P  o.  Q )  o.  P )  \  _I  ) )  <->  ( ( P  o.  Q )  =  ( ( ( P  o.  Q )  o.  P )  o.  P )  /\  A  e.  dom  ( P  \  _I  )  /\  -.  A  e.  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  ) ) ) )
138131, 137rspc2ev 3052 . . . . 5  |-  ( ( ( ( P  o.  Q )  o.  P
)  e.  T  /\  P  e.  T  /\  ( ( P  o.  Q )  =  ( ( ( P  o.  Q )  o.  P
)  o.  P )  /\  A  e.  dom  ( P  \  _I  )  /\  -.  A  e.  dom  ( ( ( P  o.  Q )  o.  P )  \  _I  ) ) )  ->  E. r  e.  T  E. s  e.  T  ( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) )
13922, 23, 40, 42, 124, 138syl113anc 1196 . . . 4  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  E. r  e.  T  E. s  e.  T  ( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e.  dom  ( r  \  _I  ) ) )
140139olcd 383 . . 3  |-  ( ( ( ph  /\  A  e.  dom  ( Q  \  _I  ) )  /\  P  =/=  Q )  ->  (
( P  o.  Q
)  =  (  _I  |`  D )  \/  E. r  e.  T  E. s  e.  T  (
( P  o.  Q
)  =  ( r  o.  s )  /\  A  e.  dom  ( s 
\  _I  )  /\  -.  A  e.  dom  ( r  \  _I  ) ) ) )
14111, 140pm2.61dane 2676 . 2  |-  ( (
ph  /\  A  e.  dom  ( Q  \  _I  ) )  ->  (
( P  o.  Q
)  =  (  _I  |`  D )  \/  E. r  e.  T  E. s  e.  T  (
( P  o.  Q
)  =  ( r  o.  s )  /\  A  e.  dom  ( s 
\  _I  )  /\  -.  A  e.  dom  ( r  \  _I  ) ) ) )
1421adantr 452 . . . 4  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  Q  e.  T )
143 coass 5379 . . . . . . 7  |-  ( ( Q  o.  P )  o.  Q )  =  ( Q  o.  ( P  o.  Q )
)
1442, 3pmtrfcnv 27320 . . . . . . . . . 10  |-  ( Q  e.  T  ->  `' Q  =  Q )
1451, 144syl 16 . . . . . . . . 9  |-  ( ph  ->  `' Q  =  Q
)
146145eqcomd 2440 . . . . . . . 8  |-  ( ph  ->  Q  =  `' Q
)
147146coeq2d 5026 . . . . . . 7  |-  ( ph  ->  ( ( Q  o.  P )  o.  Q
)  =  ( ( Q  o.  P )  o.  `' Q ) )
148143, 147syl5eqr 2481 . . . . . 6  |-  ( ph  ->  ( Q  o.  ( P  o.  Q )
)  =  ( ( Q  o.  P )  o.  `' Q ) )
1492, 3pmtrfconj 27322 . . . . . . 7  |-  ( ( P  e.  T  /\  Q : D -1-1-onto-> D )  ->  (
( Q  o.  P
)  o.  `' Q
)  e.  T )
15012, 31, 149syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( Q  o.  P )  o.  `' Q )  e.  T
)
151148, 150eqeltrd 2509 . . . . 5  |-  ( ph  ->  ( Q  o.  ( P  o.  Q )
)  e.  T )
152151adantr 452 . . . 4  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  ( Q  o.  ( P  o.  Q ) )  e.  T )
1535coeq1d 5025 . . . . . . 7  |-  ( ph  ->  ( ( Q  o.  Q )  o.  ( P  o.  Q )
)  =  ( (  _I  |`  D )  o.  ( P  o.  Q
) ) )
154 fcoi2 5609 . . . . . . . 8  |-  ( ( P  o.  Q ) : D --> D  -> 
( (  _I  |`  D )  o.  ( P  o.  Q ) )  =  ( P  o.  Q
) )
15535, 154syl 16 . . . . . . 7  |-  ( ph  ->  ( (  _I  |`  D )  o.  ( P  o.  Q ) )  =  ( P  o.  Q
) )
156153, 155eqtr2d 2468 . . . . . 6  |-  ( ph  ->  ( P  o.  Q
)  =  ( ( Q  o.  Q )  o.  ( P  o.  Q ) ) )
157 coass 5379 . . . . . 6  |-  ( ( Q  o.  Q )  o.  ( P  o.  Q ) )  =  ( Q  o.  ( Q  o.  ( P  o.  Q ) ) )
158156, 157syl6eq 2483 . . . . 5  |-  ( ph  ->  ( P  o.  Q
)  =  ( Q  o.  ( Q  o.  ( P  o.  Q
) ) ) )
159158adantr 452 . . . 4  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  ( P  o.  Q )  =  ( Q  o.  ( Q  o.  ( P  o.  Q )
) ) )
160 f1ofn 5666 . . . . . . . . . 10  |-  ( Q : D -1-1-onto-> D  ->  Q  Fn  D )
16131, 160syl 16 . . . . . . . . 9  |-  ( ph  ->  Q  Fn  D )
162 fnelnfp 26675 . . . . . . . . 9  |-  ( ( Q  Fn  D  /\  A  e.  D )  ->  ( A  e.  dom  ( Q  \  _I  )  <->  ( Q `  A )  =/=  A ) )
163161, 80, 162syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( A  e.  dom  ( Q  \  _I  )  <->  ( Q `  A )  =/=  A ) )
164163necon2bbid 2656 . . . . . . 7  |-  ( ph  ->  ( ( Q `  A )  =  A  <->  -.  A  e.  dom  ( Q  \  _I  )
) )
165164biimpar 472 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  ( Q `  A )  =  A )
166 fnfvima 5967 . . . . . . . 8  |-  ( ( Q  Fn  D  /\  dom  ( P  \  _I  )  C_  D  /\  A  e.  dom  ( P  \  _I  ) )  ->  ( Q `  A )  e.  ( Q " dom  ( P  \  _I  )
) )
167161, 79, 41, 166syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( Q `  A
)  e.  ( Q
" dom  ( P  \  _I  ) ) )
168167adantr 452 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  ( Q `  A )  e.  ( Q " dom  ( P  \  _I  )
) )
169165, 168eqeltrrd 2510 . . . . 5  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  A  e.  ( Q " dom  ( P  \  _I  )
) )
170148difeq1d 3456 . . . . . . . 8  |-  ( ph  ->  ( ( Q  o.  ( P  o.  Q
) )  \  _I  )  =  ( (
( Q  o.  P
)  o.  `' Q
)  \  _I  )
)
171170dmeqd 5063 . . . . . . 7  |-  ( ph  ->  dom  ( ( Q  o.  ( P  o.  Q ) )  \  _I  )  =  dom  ( ( ( Q  o.  P )  o.  `' Q )  \  _I  ) )
172 f1omvdconj 27304 . . . . . . . 8  |-  ( ( P : D --> D  /\  Q : D -1-1-onto-> D )  ->  dom  ( ( ( Q  o.  P )  o.  `' Q )  \  _I  )  =  ( Q " dom  ( P  \  _I  ) ) )
17329, 31, 172syl2anc 643 . . . . . . 7  |-  ( ph  ->  dom  ( ( ( Q  o.  P )  o.  `' Q ) 
\  _I  )  =  ( Q " dom  ( P  \  _I  )
) )
174171, 173eqtrd 2467 . . . . . 6  |-  ( ph  ->  dom  ( ( Q  o.  ( P  o.  Q ) )  \  _I  )  =  ( Q " dom  ( P 
\  _I  ) ) )
175174adantr 452 . . . . 5  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  dom  ( ( Q  o.  ( P  o.  Q
) )  \  _I  )  =  ( Q " dom  ( P  \  _I  ) ) )
176169, 175eleqtrrd 2512 . . . 4  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  A  e.  dom  ( ( Q  o.  ( P  o.  Q ) )  \  _I  ) )
177 simpr 448 . . . 4  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  -.  A  e.  dom  ( Q 
\  _I  ) )
178 coeq1 5021 . . . . . . 7  |-  ( r  =  Q  ->  (
r  o.  s )  =  ( Q  o.  s ) )
179178eqeq2d 2446 . . . . . 6  |-  ( r  =  Q  ->  (
( P  o.  Q
)  =  ( r  o.  s )  <->  ( P  o.  Q )  =  ( Q  o.  s ) ) )
180 difeq1 3450 . . . . . . . . 9  |-  ( r  =  Q  ->  (
r  \  _I  )  =  ( Q  \  _I  ) )
181180dmeqd 5063 . . . . . . . 8  |-  ( r  =  Q  ->  dom  ( r  \  _I  )  =  dom  ( Q 
\  _I  ) )
182181eleq2d 2502 . . . . . . 7  |-  ( r  =  Q  ->  ( A  e.  dom  ( r 
\  _I  )  <->  A  e.  dom  ( Q  \  _I  ) ) )
183182notbid 286 . . . . . 6  |-  ( r  =  Q  ->  ( -.  A  e.  dom  ( r  \  _I  ) 
<->  -.  A  e.  dom  ( Q  \  _I  )
) )
184179, 1833anbi13d 1256 . . . . 5  |-  ( r  =  Q  ->  (
( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) )  <->  ( ( P  o.  Q )  =  ( Q  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e.  dom  ( Q  \  _I  ) ) ) )
185 coeq2 5022 . . . . . . 7  |-  ( s  =  ( Q  o.  ( P  o.  Q
) )  ->  ( Q  o.  s )  =  ( Q  o.  ( Q  o.  ( P  o.  Q )
) ) )
186185eqeq2d 2446 . . . . . 6  |-  ( s  =  ( Q  o.  ( P  o.  Q
) )  ->  (
( P  o.  Q
)  =  ( Q  o.  s )  <->  ( P  o.  Q )  =  ( Q  o.  ( Q  o.  ( P  o.  Q ) ) ) ) )
187 difeq1 3450 . . . . . . . 8  |-  ( s  =  ( Q  o.  ( P  o.  Q
) )  ->  (
s  \  _I  )  =  ( ( Q  o.  ( P  o.  Q ) )  \  _I  ) )
188187dmeqd 5063 . . . . . . 7  |-  ( s  =  ( Q  o.  ( P  o.  Q
) )  ->  dom  ( s  \  _I  )  =  dom  ( ( Q  o.  ( P  o.  Q ) ) 
\  _I  ) )
189188eleq2d 2502 . . . . . 6  |-  ( s  =  ( Q  o.  ( P  o.  Q
) )  ->  ( A  e.  dom  ( s 
\  _I  )  <->  A  e.  dom  ( ( Q  o.  ( P  o.  Q
) )  \  _I  ) ) )
190186, 1893anbi12d 1255 . . . . 5  |-  ( s  =  ( Q  o.  ( P  o.  Q
) )  ->  (
( ( P  o.  Q )  =  ( Q  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( Q  \  _I  ) )  <->  ( ( P  o.  Q )  =  ( Q  o.  ( Q  o.  ( P  o.  Q )
) )  /\  A  e.  dom  ( ( Q  o.  ( P  o.  Q ) )  \  _I  )  /\  -.  A  e.  dom  ( Q  \  _I  ) ) ) )
191184, 190rspc2ev 3052 . . . 4  |-  ( ( Q  e.  T  /\  ( Q  o.  ( P  o.  Q )
)  e.  T  /\  ( ( P  o.  Q )  =  ( Q  o.  ( Q  o.  ( P  o.  Q ) ) )  /\  A  e.  dom  ( ( Q  o.  ( P  o.  Q
) )  \  _I  )  /\  -.  A  e. 
dom  ( Q  \  _I  ) ) )  ->  E. r  e.  T  E. s  e.  T  ( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) )
192142, 152, 159, 176, 177, 191syl113anc 1196 . . 3  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  E. r  e.  T  E. s  e.  T  ( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e.  dom  ( r  \  _I  ) ) )
193192olcd 383 . 2  |-  ( (
ph  /\  -.  A  e.  dom  ( Q  \  _I  ) )  ->  (
( P  o.  Q
)  =  (  _I  |`  D )  \/  E. r  e.  T  E. s  e.  T  (
( P  o.  Q
)  =  ( r  o.  s )  /\  A  e.  dom  ( s 
\  _I  )  /\  -.  A  e.  dom  ( r  \  _I  ) ) ) )
194141, 193pm2.61dan 767 1  |-  ( ph  ->  ( ( P  o.  Q )  =  (  _I  |`  D )  \/  E. r  e.  T  E. s  e.  T  ( ( P  o.  Q )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   _Vcvv 2948    \ cdif 3309    C_ wss 3312   ifcif 3731   {csn 3806   {cpr 3807   U.cuni 4007   class class class wbr 4204    _I cid 4485   omcom 4836   `'ccnv 4868   dom cdm 4869   ran crn 4870    |` cres 4871   "cima 4872    o. ccom 4873    Fn wfn 5440   -->wf 5441   -1-1-onto->wf1o 5444   ` cfv 5445   2oc2o 6709    ~~ cen 7097   Fincfn 7100  pmTrspcpmtr 27299
This theorem is referenced by:  psgnunilem2  27333
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-1o 6715  df-2o 6716  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-pmtr 27300
  Copyright terms: Public domain W3C validator