MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Unicode version

Theorem psslinpr 8897
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )

Proof of Theorem psslinpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 8857 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  x  e.  Q. )
2 prub 8860 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  x  e.  Q. )  ->  ( -.  x  e.  B  ->  y  <Q  x ) )
31, 2sylan2 461 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  <Q  x ) )
4 prcdnq 8859 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
54adantl 453 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( y  <Q  x  ->  y  e.  A ) )
63, 5syld 42 . . . . . . . . . . 11  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  e.  A ) )
76exp43 596 . . . . . . . . . 10  |-  ( B  e.  P.  ->  (
y  e.  B  -> 
( A  e.  P.  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
87com3r 75 . . . . . . . . 9  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( y  e.  B  -> 
( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
98imp 419 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) )
109imp4a 573 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  y  e.  A ) ) )
1110com23 74 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  (
y  e.  B  -> 
y  e.  A ) ) )
1211alrimdv 1643 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
1312exlimdv 1646 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x ( x  e.  A  /\  -.  x  e.  B
)  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
14 nss 3398 . . . . 5  |-  ( -.  A  C_  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
15 sspss 3438 . . . . 5  |-  ( A 
C_  B  <->  ( A  C.  B  \/  A  =  B ) )
1614, 15xchnxbi 300 . . . 4  |-  ( -.  ( A  C.  B  \/  A  =  B
)  <->  E. x ( x  e.  A  /\  -.  x  e.  B )
)
17 sspss 3438 . . . . 5  |-  ( B 
C_  A  <->  ( B  C.  A  \/  B  =  A ) )
18 dfss2 3329 . . . . 5  |-  ( B 
C_  A  <->  A. y
( y  e.  B  ->  y  e.  A ) )
1917, 18bitr3i 243 . . . 4  |-  ( ( B  C.  A  \/  B  =  A )  <->  A. y ( y  e.  B  ->  y  e.  A ) )
2013, 16, 193imtr4g 262 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( -.  ( A 
C.  B  \/  A  =  B )  ->  ( B  C.  A  \/  B  =  A ) ) )
2120orrd 368 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
22 df-3or 937 . . 3  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  B  C.  A ) )
23 or32 514 . . 3  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  B  C.  A )  <->  ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B ) )
24 orordir 518 . . . 4  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
25 eqcom 2437 . . . . . 6  |-  ( B  =  A  <->  A  =  B )
2625orbi2i 506 . . . . 5  |-  ( ( B  C.  A  \/  B  =  A )  <->  ( B  C.  A  \/  A  =  B )
)
2726orbi2i 506 . . . 4  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  ( B 
C.  A  \/  B  =  A ) )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
2824, 27bitr4i 244 . . 3  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
2922, 23, 283bitri 263 . 2  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
3021, 29sylibr 204 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    \/ w3o 935   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725    C_ wss 3312    C. wpss 3313   class class class wbr 4204   Q.cnq 8716    <Q cltq 8722   P.cnp 8723
This theorem is referenced by:  ltsopr  8898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-recs 6624  df-rdg 6659  df-oadd 6719  df-omul 6720  df-er 6896  df-ni 8738  df-mi 8740  df-lti 8741  df-ltpq 8776  df-enq 8777  df-nq 8778  df-ltnq 8784  df-np 8847
  Copyright terms: Public domain W3C validator