MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Unicode version

Theorem psslinpr 8671
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )

Proof of Theorem psslinpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 8631 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  x  e.  Q. )
2 prub 8634 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  x  e.  Q. )  ->  ( -.  x  e.  B  ->  y  <Q  x ) )
31, 2sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  <Q  x ) )
4 prcdnq 8633 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
54adantl 452 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( y  <Q  x  ->  y  e.  A ) )
63, 5syld 40 . . . . . . . . . . 11  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  e.  A ) )
76exp43 595 . . . . . . . . . 10  |-  ( B  e.  P.  ->  (
y  e.  B  -> 
( A  e.  P.  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
87com3r 73 . . . . . . . . 9  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( y  e.  B  -> 
( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
98imp 418 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) )
109imp4a 572 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  y  e.  A ) ) )
1110com23 72 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  (
y  e.  B  -> 
y  e.  A ) ) )
1211alrimdv 1623 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
1312exlimdv 1626 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x ( x  e.  A  /\  -.  x  e.  B
)  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
14 nss 3249 . . . . 5  |-  ( -.  A  C_  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
15 sspss 3288 . . . . 5  |-  ( A 
C_  B  <->  ( A  C.  B  \/  A  =  B ) )
1614, 15xchnxbi 299 . . . 4  |-  ( -.  ( A  C.  B  \/  A  =  B
)  <->  E. x ( x  e.  A  /\  -.  x  e.  B )
)
17 sspss 3288 . . . . 5  |-  ( B 
C_  A  <->  ( B  C.  A  \/  B  =  A ) )
18 dfss2 3182 . . . . 5  |-  ( B 
C_  A  <->  A. y
( y  e.  B  ->  y  e.  A ) )
1917, 18bitr3i 242 . . . 4  |-  ( ( B  C.  A  \/  B  =  A )  <->  A. y ( y  e.  B  ->  y  e.  A ) )
2013, 16, 193imtr4g 261 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( -.  ( A 
C.  B  \/  A  =  B )  ->  ( B  C.  A  \/  B  =  A ) ) )
2120orrd 367 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
22 df-3or 935 . . 3  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  B  C.  A ) )
23 or32 513 . . 3  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  B  C.  A )  <->  ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B ) )
24 orordir 517 . . . 4  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
25 eqcom 2298 . . . . . 6  |-  ( B  =  A  <->  A  =  B )
2625orbi2i 505 . . . . 5  |-  ( ( B  C.  A  \/  B  =  A )  <->  ( B  C.  A  \/  A  =  B )
)
2726orbi2i 505 . . . 4  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  ( B 
C.  A  \/  B  =  A ) )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
2824, 27bitr4i 243 . . 3  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
2922, 23, 283bitri 262 . 2  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
3021, 29sylibr 203 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    \/ w3o 933   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696    C_ wss 3165    C. wpss 3166   class class class wbr 4039   Q.cnq 8490    <Q cltq 8496   P.cnp 8497
This theorem is referenced by:  ltsopr  8672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-mi 8514  df-lti 8515  df-ltpq 8550  df-enq 8551  df-nq 8552  df-ltnq 8558  df-np 8621
  Copyright terms: Public domain W3C validator