Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmxmet Structured version   Unicode version

Theorem pstmxmet 24294
Description: The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1  |-  .~  =  (~Met `  D )
Assertion
Ref Expression
pstmxmet  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
)  e.  ( * Met `  ( X /.  .~  ) ) )

Proof of Theorem pstmxmet
Dummy variables  a 
b  c  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2961 . . . . . . . . 9  |-  x  e. 
_V
2 vex 2961 . . . . . . . . 9  |-  y  e. 
_V
31, 2ab2rexex 6228 . . . . . . . 8  |-  { z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) }  e.  _V
43uniex 4707 . . . . . . 7  |-  U. {
z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) }  e.  _V
54rgen2w 2776 . . . . . 6  |-  A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  ) U. { z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) }  e.  _V
6 eqid 2438 . . . . . . 7  |-  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } )  =  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } )
76fnmpt2 6421 . . . . . 6  |-  ( A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  ) U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) }  e.  _V  ->  (
x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) } )  Fn  ( ( X /.  .~  )  X.  ( X /.  .~  ) ) )
85, 7ax-mp 8 . . . . 5  |-  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } )  Fn  ( ( X /.  .~  )  X.  ( X /.  .~  ) )
9 pstmval.1 . . . . . . 7  |-  .~  =  (~Met `  D )
109pstmval 24292 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
)  =  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } ) )
1110fneq1d 5538 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  ( (pstoMet `  D )  Fn  (
( X /.  .~  )  X.  ( X /.  .~  ) )  <->  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |-> 
U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } )  Fn  ( ( X /.  .~  )  X.  ( X /.  .~  ) ) ) )
128, 11mpbiri 226 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
)  Fn  ( ( X /.  .~  )  X.  ( X /.  .~  ) ) )
13 simpllr 737 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  x  =  [
a ]  .~  )
14 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  y  =  [
b ]  .~  )
1513, 14oveq12d 6101 . . . . . . . . 9  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( x (pstoMet `  D ) y )  =  ( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  ) )
16 simp-5l 746 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  D  e.  (PsMet `  X ) )
17 simp-4r 745 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  a  e.  X
)
18 simplr 733 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  b  e.  X
)
199pstmfval 24293 . . . . . . . . . 10  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X  /\  b  e.  X )  ->  ( [ a ]  .~  (pstoMet `  D ) [ b ]  .~  )  =  ( a D b ) )
2016, 17, 18, 19syl3anc 1185 . . . . . . . . 9  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  ( a D b ) )
2115, 20eqtrd 2470 . . . . . . . 8  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( x (pstoMet `  D ) y )  =  ( a D b ) )
22 psmetf 18339 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
2316, 22syl 16 . . . . . . . . 9  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  D : ( X  X.  X ) -->
RR* )
2423, 17, 18fovrnd 6220 . . . . . . . 8  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( a D b )  e.  RR* )
2521, 24eqeltrd 2512 . . . . . . 7  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( x (pstoMet `  D ) y )  e.  RR* )
26 elqsi 6960 . . . . . . . . 9  |-  ( y  e.  ( X /.  .~  )  ->  E. b  e.  X  y  =  [ b ]  .~  )
2726ad2antll 711 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  ->  E. b  e.  X  y  =  [ b ]  .~  )
2827ad2antrr 708 . . . . . . 7  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  ( x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  ->  E. b  e.  X  y  =  [ b ]  .~  )
2925, 28r19.29a 2852 . . . . . 6  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  ( x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  ->  ( x (pstoMet `  D ) y )  e.  RR* )
30 elqsi 6960 . . . . . . 7  |-  ( x  e.  ( X /.  .~  )  ->  E. a  e.  X  x  =  [ a ]  .~  )
3130ad2antrl 710 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  ->  E. a  e.  X  x  =  [ a ]  .~  )
3229, 31r19.29a 2852 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  ->  ( x (pstoMet `  D ) y )  e.  RR* )
3332ralrimivva 2800 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  )
( x (pstoMet `  D
) y )  e. 
RR* )
34 ffnov 6176 . . . 4  |-  ( (pstoMet `  D ) : ( ( X /.  .~  )  X.  ( X /.  .~  ) ) --> RR*  <->  ( (pstoMet `  D )  Fn  (
( X /.  .~  )  X.  ( X /.  .~  ) )  /\  A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  ) ( x (pstoMet `  D ) y )  e.  RR* ) )
3512, 33, 34sylanbrc 647 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
) : ( ( X /.  .~  )  X.  ( X /.  .~  ) ) --> RR* )
36 simpll 732 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  D  e.  (PsMet `  X )
)
37 simplr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  a  e.  X )
38 simpr 449 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  b  e.  X )
3936, 37, 38, 19syl3anc 1185 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  ( [ a ]  .~  (pstoMet `  D ) [ b ]  .~  )  =  ( a D b ) )
4039eqeq1d 2446 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  (
( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  0  <-> 
( a D b )  =  0 ) )
419breqi 4220 . . . . . . . . . . . . . 14  |-  ( a  .~  b  <->  a (~Met `  D ) b )
42 metidv 24289 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  (PsMet `  X )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
(~Met `  D )
b  <->  ( a D b )  =  0 ) )
4342anassrs 631 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  (
a (~Met `  D
) b  <->  ( a D b )  =  0 ) )
4441, 43syl5bb 250 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  (
a  .~  b  <->  ( a D b )  =  0 ) )
4540, 44bitr4d 249 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  (
( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  0  <-> 
a  .~  b )
)
46 metider 24291 . . . . . . . . . . . . . . 15  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  Er  X )
4736, 46syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  (~Met `  D )  Er  X
)
48 ereq1 6914 . . . . . . . . . . . . . . 15  |-  (  .~  =  (~Met `  D )  ->  (  .~  Er  X  <->  (~Met `  D )  Er  X
) )
499, 48ax-mp 8 . . . . . . . . . . . . . 14  |-  (  .~  Er  X  <->  (~Met `  D )  Er  X )
5047, 49sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  .~  Er  X )
5150, 37erth 6951 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  (
a  .~  b  <->  [ a ]  .~  =  [ b ]  .~  ) )
5245, 51bitrd 246 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  b  e.  X )  ->  (
( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  0  <->  [ a ]  .~  =  [ b ]  .~  ) )
5352adantllr 701 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  ( x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X )  /\  b  e.  X )  ->  (
( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  0  <->  [ a ]  .~  =  [ b ]  .~  ) )
5453adantlr 697 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  ( x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  )
) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  ->  ( ( [ a ]  .~  (pstoMet `  D ) [ b ]  .~  )  =  0  <->  [ a ]  .~  =  [ b ]  .~  ) )
5554adantr 453 . . . . . . . 8  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( ( [ a ]  .~  (pstoMet `  D ) [ b ]  .~  )  =  0  <->  [ a ]  .~  =  [ b ]  .~  ) )
5615eqeq1d 2446 . . . . . . . 8  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( ( x (pstoMet `  D )
y )  =  0  <-> 
( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  0 ) )
5713, 14eqeq12d 2452 . . . . . . . 8  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( x  =  y  <->  [ a ]  .~  =  [ b ]  .~  ) )
5855, 56, 573bitr4d 278 . . . . . . 7  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( ( x (pstoMet `  D )
y )  =  0  <-> 
x  =  y ) )
5958, 28r19.29a 2852 . . . . . 6  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  ( x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  ->  ( ( x (pstoMet `  D )
y )  =  0  <-> 
x  =  y ) )
6059, 31r19.29a 2852 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  ->  ( ( x (pstoMet `  D )
y )  =  0  <-> 
x  =  y ) )
61 simp-6l 748 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  D  e.  (PsMet `  X ) )
62 simplr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  c  e.  X
)
63 simp-6r 749 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  a  e.  X
)
64 simp-4r 745 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  b  e.  X
)
65 psmettri2 18342 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  (PsMet `  X )  /\  (
c  e.  X  /\  a  e.  X  /\  b  e.  X )
)  ->  ( a D b )  <_ 
( ( c D a ) + e
( c D b ) ) )
6661, 62, 63, 64, 65syl13anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( a D b )  <_  (
( c D a ) + e ( c D b ) ) )
67 simp-5r 747 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  x  =  [
a ]  .~  )
68 simpllr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  y  =  [
b ]  .~  )
6967, 68oveq12d 6101 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( x (pstoMet `  D ) y )  =  ( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  ) )
7061, 63, 64, 39syl21anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( [ a ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  ( a D b ) )
7169, 70eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( x (pstoMet `  D ) y )  =  ( a D b ) )
72 simpr 449 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  z  =  [
c ]  .~  )
7372, 67oveq12d 6101 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( z (pstoMet `  D ) x )  =  ( [ c ]  .~  (pstoMet `  D
) [ a ]  .~  ) )
749pstmfval 24293 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  (PsMet `  X )  /\  c  e.  X  /\  a  e.  X )  ->  ( [ c ]  .~  (pstoMet `  D ) [ a ]  .~  )  =  ( c D a ) )
7561, 62, 63, 74syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( [ c ]  .~  (pstoMet `  D
) [ a ]  .~  )  =  ( c D a ) )
7673, 75eqtrd 2470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( z (pstoMet `  D ) x )  =  ( c D a ) )
7772, 68oveq12d 6101 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( z (pstoMet `  D ) y )  =  ( [ c ]  .~  (pstoMet `  D
) [ b ]  .~  ) )
789pstmfval 24293 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  (PsMet `  X )  /\  c  e.  X  /\  b  e.  X )  ->  ( [ c ]  .~  (pstoMet `  D ) [ b ]  .~  )  =  ( c D b ) )
7961, 62, 64, 78syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( [ c ]  .~  (pstoMet `  D
) [ b ]  .~  )  =  ( c D b ) )
8077, 79eqtrd 2470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( z (pstoMet `  D ) y )  =  ( c D b ) )
8176, 80oveq12d 6101 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) )  =  ( ( c D a ) + e ( c D b ) ) )
8271, 81breq12d 4227 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( ( x (pstoMet `  D )
y )  <_  (
( z (pstoMet `  D
) x ) + e ( z (pstoMet `  D ) y ) )  <->  ( a D b )  <_  (
( c D a ) + e ( c D b ) ) ) )
8366, 82mpbird 225 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) )
8483adantl6r 23961 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  z  e.  ( X /.  .~  ) )  /\  a  e.  X
)  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  /\  c  e.  X
)  /\  z  =  [ c ]  .~  )  ->  ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) )
85 elqsi 6960 . . . . . . . . . . . . 13  |-  ( z  e.  ( X /.  .~  )  ->  E. c  e.  X  z  =  [ c ]  .~  )
8685ad5antlr 717 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  z  e.  ( X /.  .~  ) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  E. c  e.  X  z  =  [ c ]  .~  )
8784, 86r19.29a 2852 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  z  e.  ( X /.  .~  ) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) )
8887adantl5r 23960 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  ( X /.  .~  ) )  /\  z  e.  ( X /.  .~  ) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  /\  b  e.  X
)  /\  y  =  [ b ]  .~  )  ->  ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) )
8926ad4antlr 715 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  y  e.  ( X /.  .~  )
)  /\  z  e.  ( X /.  .~  )
)  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  ->  E. b  e.  X  y  =  [ b ]  .~  )
9088, 89r19.29a 2852 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  y  e.  ( X /.  .~  )
)  /\  z  e.  ( X /.  .~  )
)  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  ->  ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) )
9190adantl4r 23959 . . . . . . . 8  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  x  e.  ( X /.  .~  ) )  /\  y  e.  ( X /.  .~  ) )  /\  z  e.  ( X /.  .~  ) )  /\  a  e.  X )  /\  x  =  [ a ]  .~  )  ->  ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) )
9230ad3antlr 713 . . . . . . . 8  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  x  e.  ( X /.  .~  ) )  /\  y  e.  ( X /.  .~  )
)  /\  z  e.  ( X /.  .~  )
)  ->  E. a  e.  X  x  =  [ a ]  .~  )
9391, 92r19.29a 2852 . . . . . . 7  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  x  e.  ( X /.  .~  ) )  /\  y  e.  ( X /.  .~  )
)  /\  z  e.  ( X /.  .~  )
)  ->  ( x
(pstoMet `  D ) y )  <_  ( (
z (pstoMet `  D
) x ) + e ( z (pstoMet `  D ) y ) ) )
9493ralrimiva 2791 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  x  e.  ( X /.  .~  ) )  /\  y  e.  ( X /.  .~  ) )  ->  A. z  e.  ( X /.  .~  ) ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) )
9594anasss 630 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  ->  A. z  e.  ( X /.  .~  )
( x (pstoMet `  D
) y )  <_ 
( ( z (pstoMet `  D ) x ) + e ( z (pstoMet `  D )
y ) ) )
9660, 95jca 520 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  ( X /.  .~  )  /\  y  e.  ( X /.  .~  ) ) )  ->  ( ( ( x (pstoMet `  D
) y )  =  0  <->  x  =  y
)  /\  A. z  e.  ( X /.  .~  ) ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) ) )
9796ralrimivva 2800 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  )
( ( ( x (pstoMet `  D )
y )  =  0  <-> 
x  =  y )  /\  A. z  e.  ( X /.  .~  ) ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) ) )
9835, 97jca 520 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( (pstoMet `  D ) : ( ( X /.  .~  )  X.  ( X /.  .~  ) ) --> RR*  /\  A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  ) ( ( ( x (pstoMet `  D
) y )  =  0  <->  x  =  y
)  /\  A. z  e.  ( X /.  .~  ) ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) ) ) )
99 elfvex 5760 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
100 qsexg 6964 . . 3  |-  ( X  e.  _V  ->  ( X /.  .~  )  e. 
_V )
101 isxmet 18356 . . 3  |-  ( ( X /.  .~  )  e.  _V  ->  ( (pstoMet `  D )  e.  ( * Met `  ( X /.  .~  ) )  <-> 
( (pstoMet `  D
) : ( ( X /.  .~  )  X.  ( X /.  .~  ) ) --> RR*  /\  A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  ) ( ( ( x (pstoMet `  D
) y )  =  0  <->  x  =  y
)  /\  A. z  e.  ( X /.  .~  ) ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) ) ) ) )
10299, 100, 1013syl 19 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( (pstoMet `  D )  e.  ( * Met `  ( X /.  .~  ) )  <-> 
( (pstoMet `  D
) : ( ( X /.  .~  )  X.  ( X /.  .~  ) ) --> RR*  /\  A. x  e.  ( X /.  .~  ) A. y  e.  ( X /.  .~  ) ( ( ( x (pstoMet `  D
) y )  =  0  <->  x  =  y
)  /\  A. z  e.  ( X /.  .~  ) ( x (pstoMet `  D ) y )  <_  ( ( z (pstoMet `  D )
x ) + e
( z (pstoMet `  D
) y ) ) ) ) ) )
10398, 102mpbird 225 1  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
)  e.  ( * Met `  ( X /.  .~  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   {cab 2424   A.wral 2707   E.wrex 2708   _Vcvv 2958   U.cuni 4017   class class class wbr 4214    X. cxp 4878    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085    Er wer 6904   [cec 6905   /.cqs 6906   0cc0 8992   RR*cxr 9121    <_ cle 9123   + ecxad 10710  PsMetcpsmet 16687   * Metcxmt 16688  ~Metcmetid 24283  pstoMetcpstm 24284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-2 10060  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-psmet 16696  df-xmet 16697  df-metid 24285  df-pstm 24286
  Copyright terms: Public domain W3C validator