MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem5 Unicode version

Theorem ptcmplem5 17766
Description: Lemma for ptcmp 17768. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
ptcmp.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
ptcmp.3  |-  ( ph  ->  A  e.  V )
ptcmp.4  |-  ( ph  ->  F : A --> Comp )
ptcmp.5  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
Assertion
Ref Expression
ptcmplem5  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Distinct variable groups:    k, n, u, w, A    S, k, n, u    ph, k, n, u    k, V, n, u, w    k, F, n, u, w    k, X, n, u, w
Allowed substitution hints:    ph( w)    S( w)

Proof of Theorem ptcmplem5
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3402 . . 3  |-  (UFL  i^i  dom 
card )  C_ UFL
2 ptcmp.5 . . 3  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
31, 2sseldi 3191 . 2  |-  ( ph  ->  X  e. UFL )
4 ptcmp.1 . . . 4  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
5 ptcmp.2 . . . 4  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
6 ptcmp.3 . . . 4  |-  ( ph  ->  A  e.  V )
7 ptcmp.4 . . . 4  |-  ( ph  ->  F : A --> Comp )
84, 5, 6, 7, 2ptcmplem1 17762 . . 3  |-  ( ph  ->  ( X  =  U. ( ran  S  u.  { X } )  /\  ( Xt_ `  F )  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) ) )
98simpld 445 . 2  |-  ( ph  ->  X  =  U. ( ran  S  u.  { X } ) )
108simprd 449 . 2  |-  ( ph  ->  ( Xt_ `  F
)  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) )
11 elpwi 3646 . . . . . 6  |-  ( y  e.  ~P ran  S  ->  y  C_  ran  S )
126ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A  e.  V )
137ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  F : A
--> Comp )
142ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  e.  (UFL  i^i  dom  card ) )
15 simplrl 736 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  y  C_  ran  S )
16 simplrr 737 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  =  U. y )
17 simpr 447 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  -.  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
18 imaeq2 5024 . . . . . . . . . . 11  |-  ( z  =  u  ->  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) )
1918eleq1d 2362 . . . . . . . . . 10  |-  ( z  =  u  ->  (
( `' ( w  e.  X  |->  ( w `
 k ) )
" z )  e.  y  <->  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  y ) )
2019cbvrabv 2800 . . . . . . . . 9  |-  { z  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  e.  y }  =  { u  e.  ( F `  k
)  |  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  e.  y }
214, 5, 12, 13, 14, 15, 16, 17, 20ptcmplem4 17765 . . . . . . . 8  |-  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
22 iman 413 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  <->  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) )
2321, 22mpbir 200 . . . . . . 7  |-  ( (
ph  /\  ( y  C_ 
ran  S  /\  X  = 
U. y ) )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )
2423expr 598 . . . . . 6  |-  ( (
ph  /\  y  C_  ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2511, 24sylan2 460 . . . . 5  |-  ( (
ph  /\  y  e.  ~P ran  S )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2625adantlr 695 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  y  e.  ~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
27 vex 2804 . . . . . . . 8  |-  y  e. 
_V
2827elpw 3644 . . . . . . 7  |-  ( y  e.  ~P ( ran 
S  u.  { X } )  <->  y  C_  ( ran  S  u.  { X } ) )
29 eldif 3175 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  <->  ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e. 
~P ran  S )
)
30 elpwunsn 4584 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  ->  X  e.  y )
3129, 30sylbir 204 . . . . . . 7  |-  ( ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3228, 31sylanbr 459 . . . . . 6  |-  ( ( y  C_  ( ran  S  u.  { X }
)  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3332adantll 694 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  X  e.  y )
34 snssi 3775 . . . . . . . . 9  |-  ( X  e.  y  ->  { X }  C_  y )
3534adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  C_  y )
36 snfi 6957 . . . . . . . . 9  |-  { X }  e.  Fin
3736a1i 10 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  Fin )
38 elfpw 7173 . . . . . . . 8  |-  ( { X }  e.  ( ~P y  i^i  Fin ) 
<->  ( { X }  C_  y  /\  { X }  e.  Fin )
)
3935, 37, 38sylanbrc 645 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  ( ~P y  i^i  Fin ) )
40 unisng 3860 . . . . . . . . 9  |-  ( X  e.  y  ->  U. { X }  =  X
)
4140eqcomd 2301 . . . . . . . 8  |-  ( X  e.  y  ->  X  =  U. { X }
)
4241adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  X  =  U. { X } )
43 unieq 3852 . . . . . . . . 9  |-  ( z  =  { X }  ->  U. z  =  U. { X } )
4443eqeq2d 2307 . . . . . . . 8  |-  ( z  =  { X }  ->  ( X  =  U. z 
<->  X  =  U. { X } ) )
4544rspcev 2897 . . . . . . 7  |-  ( ( { X }  e.  ( ~P y  i^i  Fin )  /\  X  =  U. { X } )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
4639, 42, 45syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
4746a1d 22 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
4833, 47syldan 456 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
4926, 48pm2.61dan 766 . . 3  |-  ( (
ph  /\  y  C_  ( ran  S  u.  { X } ) )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
5049impr 602 . 2  |-  ( (
ph  /\  ( y  C_  ( ran  S  u.  { X } )  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
513, 9, 10, 50alexsub 17755 1  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   {crab 2560    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   {csn 3653   U.cuni 3843    e. cmpt 4093   `'ccnv 4704   dom cdm 4705   ran crn 4706   "cima 4708   -->wf 5267   ` cfv 5271    e. cmpt2 5876   X_cixp 6833   Fincfn 6879   ficfi 7180   cardccrd 7584   topGenctg 13358   Xt_cpt 13359   Compccmp 17129  UFLcufl 17611
This theorem is referenced by:  ptcmpg  17767
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-wdom 7289  df-card 7588  df-acn 7591  df-topgen 13360  df-pt 13361  df-top 16652  df-bases 16654  df-topon 16655  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-cmp 17130  df-fbas 17536  df-fg 17537  df-fil 17557  df-ufil 17612  df-ufl 17613  df-flim 17650  df-fcls 17652
  Copyright terms: Public domain W3C validator