MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem5 Unicode version

Theorem ptcmplem5 18070
Description: Lemma for ptcmp 18072. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
ptcmp.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
ptcmp.3  |-  ( ph  ->  A  e.  V )
ptcmp.4  |-  ( ph  ->  F : A --> Comp )
ptcmp.5  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
Assertion
Ref Expression
ptcmplem5  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Distinct variable groups:    k, n, u, w, A    S, k, n, u    ph, k, n, u    k, V, n, u, w    k, F, n, u, w    k, X, n, u, w
Allowed substitution hints:    ph( w)    S( w)

Proof of Theorem ptcmplem5
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3548 . . 3  |-  (UFL  i^i  dom 
card )  C_ UFL
2 ptcmp.5 . . 3  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
31, 2sseldi 3333 . 2  |-  ( ph  ->  X  e. UFL )
4 ptcmp.1 . . . 4  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
5 ptcmp.2 . . . 4  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
6 ptcmp.3 . . . 4  |-  ( ph  ->  A  e.  V )
7 ptcmp.4 . . . 4  |-  ( ph  ->  F : A --> Comp )
84, 5, 6, 7, 2ptcmplem1 18066 . . 3  |-  ( ph  ->  ( X  =  U. ( ran  S  u.  { X } )  /\  ( Xt_ `  F )  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) ) )
98simpld 446 . 2  |-  ( ph  ->  X  =  U. ( ran  S  u.  { X } ) )
108simprd 450 . 2  |-  ( ph  ->  ( Xt_ `  F
)  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) )
11 elpwi 3794 . . . . . 6  |-  ( y  e.  ~P ran  S  ->  y  C_  ran  S )
126ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A  e.  V )
137ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  F : A
--> Comp )
142ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  e.  (UFL  i^i  dom  card ) )
15 simplrl 737 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  y  C_  ran  S )
16 simplrr 738 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  =  U. y )
17 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  -.  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
18 imaeq2 5185 . . . . . . . . . . 11  |-  ( z  =  u  ->  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) )
1918eleq1d 2496 . . . . . . . . . 10  |-  ( z  =  u  ->  (
( `' ( w  e.  X  |->  ( w `
 k ) )
" z )  e.  y  <->  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  y ) )
2019cbvrabv 2942 . . . . . . . . 9  |-  { z  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  e.  y }  =  { u  e.  ( F `  k
)  |  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  e.  y }
214, 5, 12, 13, 14, 15, 16, 17, 20ptcmplem4 18069 . . . . . . . 8  |-  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
22 iman 414 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  <->  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) )
2321, 22mpbir 201 . . . . . . 7  |-  ( (
ph  /\  ( y  C_ 
ran  S  /\  X  = 
U. y ) )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )
2423expr 599 . . . . . 6  |-  ( (
ph  /\  y  C_  ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2511, 24sylan2 461 . . . . 5  |-  ( (
ph  /\  y  e.  ~P ran  S )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2625adantlr 696 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  y  e.  ~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
27 vex 2946 . . . . . . . 8  |-  y  e. 
_V
2827elpw 3792 . . . . . . 7  |-  ( y  e.  ~P ( ran 
S  u.  { X } )  <->  y  C_  ( ran  S  u.  { X } ) )
29 eldif 3317 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  <->  ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e. 
~P ran  S )
)
30 elpwunsn 4743 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  ->  X  e.  y )
3129, 30sylbir 205 . . . . . . 7  |-  ( ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3228, 31sylanbr 460 . . . . . 6  |-  ( ( y  C_  ( ran  S  u.  { X }
)  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3332adantll 695 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  X  e.  y )
34 snssi 3929 . . . . . . . . 9  |-  ( X  e.  y  ->  { X }  C_  y )
3534adantl 453 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  C_  y )
36 snfi 7173 . . . . . . . . 9  |-  { X }  e.  Fin
3736a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  Fin )
38 elfpw 7394 . . . . . . . 8  |-  ( { X }  e.  ( ~P y  i^i  Fin ) 
<->  ( { X }  C_  y  /\  { X }  e.  Fin )
)
3935, 37, 38sylanbrc 646 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  ( ~P y  i^i  Fin ) )
40 unisng 4019 . . . . . . . . 9  |-  ( X  e.  y  ->  U. { X }  =  X
)
4140eqcomd 2435 . . . . . . . 8  |-  ( X  e.  y  ->  X  =  U. { X }
)
4241adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  X  =  U. { X } )
43 unieq 4011 . . . . . . . . 9  |-  ( z  =  { X }  ->  U. z  =  U. { X } )
4443eqeq2d 2441 . . . . . . . 8  |-  ( z  =  { X }  ->  ( X  =  U. z 
<->  X  =  U. { X } ) )
4544rspcev 3039 . . . . . . 7  |-  ( ( { X }  e.  ( ~P y  i^i  Fin )  /\  X  =  U. { X } )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
4639, 42, 45syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
4746a1d 23 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
4833, 47syldan 457 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
4926, 48pm2.61dan 767 . . 3  |-  ( (
ph  /\  y  C_  ( ran  S  u.  { X } ) )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
5049impr 603 . 2  |-  ( (
ph  /\  ( y  C_  ( ran  S  u.  { X } )  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
513, 9, 10, 50alexsub 18059 1  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2693   {crab 2696    \ cdif 3304    u. cun 3305    i^i cin 3306    C_ wss 3307   ~Pcpw 3786   {csn 3801   U.cuni 4002    e. cmpt 4253   `'ccnv 4863   dom cdm 4864   ran crn 4865   "cima 4867   -->wf 5436   ` cfv 5440    e. cmpt2 6069   X_cixp 7049   Fincfn 7095   ficfi 7401   cardccrd 7806   topGenctg 13648   Xt_cpt 13649   Compccmp 17432  UFLcufl 17915
This theorem is referenced by:  ptcmpg  18071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-iin 4083  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-se 4529  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-isom 5449  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-1o 6710  df-2o 6711  df-oadd 6714  df-omul 6715  df-er 6891  df-map 7006  df-ixp 7050  df-en 7096  df-dom 7097  df-sdom 7098  df-fin 7099  df-fi 7402  df-wdom 7511  df-card 7810  df-acn 7813  df-topgen 13650  df-pt 13651  df-fbas 16682  df-fg 16683  df-top 16946  df-bases 16948  df-topon 16949  df-cld 17066  df-ntr 17067  df-cls 17068  df-nei 17145  df-cmp 17433  df-fil 17861  df-ufil 17916  df-ufl 17917  df-flim 17954  df-fcls 17956
  Copyright terms: Public domain W3C validator