MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptolemy Unicode version

Theorem ptolemy 19866
Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 12454, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. (Contributed by David A. Wheeler, 31-May-2015.)
Assertion
Ref Expression
ptolemy  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C ) )  x.  ( sin `  ( A  +  C )
) ) )

Proof of Theorem ptolemy
StepHypRef Expression
1 addcl 8821 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  e.  CC )
213ad2ant2 977 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  +  D
)  e.  CC )
32coscld 12413 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  +  D )
)  e.  CC )
43negnegd 9150 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u -u ( cos `  ( C  +  D )
)  =  ( cos `  ( C  +  D
) ) )
5 cosmpi 19858 . . . . . . . . . . 11  |-  ( ( C  +  D )  e.  CC  ->  ( cos `  ( ( C  +  D )  -  pi ) )  =  -u ( cos `  ( C  +  D ) ) )
62, 5syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  -u ( cos `  ( C  +  D ) ) )
7 addid2 8997 . . . . . . . . . . . . . . . 16  |-  ( ( C  +  D )  e.  CC  ->  (
0  +  ( C  +  D ) )  =  ( C  +  D ) )
87oveq1d 5875 . . . . . . . . . . . . . . 15  |-  ( ( C  +  D )  e.  CC  ->  (
( 0  +  ( C  +  D ) )  -  ( ( A  +  B )  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  ( ( A  +  B )  +  ( C  +  D ) ) ) )
92, 8syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( 0  +  ( C  +  D
) )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  ( ( A  +  B )  +  ( C  +  D
) ) ) )
10 0cn 8833 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
1110a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
0  e.  CC )
12 addcl 8821 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
1312adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  B
)  e.  CC )
14133adant3 975 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  +  B
)  e.  CC )
1511, 14, 2pnpcan2d 9197 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( 0  +  ( C  +  D
) )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( 0  -  ( A  +  B ) ) )
16 simp3 957 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( C  +  D ) )  =  pi )
1716oveq2d 5876 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  pi ) )
189, 15, 173eqtr3rd 2326 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  pi )  =  ( 0  -  ( A  +  B ) ) )
19 df-neg 9042 . . . . . . . . . . . . 13  |-  -u ( A  +  B )  =  ( 0  -  ( A  +  B
) )
2018, 19syl6eqr 2335 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  pi )  =  -u ( A  +  B ) )
2120fveq2d 5531 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  ( cos `  -u ( A  +  B ) ) )
22 cosneg 12429 . . . . . . . . . . . 12  |-  ( ( A  +  B )  e.  CC  ->  ( cos `  -u ( A  +  B ) )  =  ( cos `  ( A  +  B )
) )
2314, 22syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  -u ( A  +  B )
)  =  ( cos `  ( A  +  B
) ) )
2421, 23eqtrd 2317 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  ( cos `  ( A  +  B
) ) )
256, 24eqtr3d 2319 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u ( cos `  ( C  +  D )
)  =  ( cos `  ( A  +  B
) ) )
2625negeqd 9048 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u -u ( cos `  ( C  +  D )
)  =  -u ( cos `  ( A  +  B ) ) )
274, 26eqtr3d 2319 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  +  D )
)  =  -u ( cos `  ( A  +  B ) ) )
2827oveq2d 5876 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  =  ( ( cos `  ( C  -  D )
)  -  -u ( cos `  ( A  +  B ) ) ) )
29 subcl 9053 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
3029adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  -  D
)  e.  CC )
3130coscld 12413 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  ( C  -  D )
)  e.  CC )
32313adant3 975 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  -  D )
)  e.  CC )
3314coscld 12413 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  +  B )
)  e.  CC )
3432, 33subnegd 9166 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  -u ( cos `  ( A  +  B ) ) )  =  ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) ) )
3528, 34eqtrd 2317 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  =  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )
3635oveq1d 5875 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 )  =  ( ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )
3736oveq2d 5876 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
38 subcl 9053 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
39383ad2ant1 976 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  -  B
)  e.  CC )
4039coscld 12413 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  -  B )
)  e.  CC )
4140, 33subcld 9159 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  e.  CC )
4232, 33addcld 8856 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  e.  CC )
43 2cn 9818 . . . . . . 7  |-  2  e.  CC
44 2ne0 9831 . . . . . . 7  |-  2  =/=  0
4543, 44pm3.2i 441 . . . . . 6  |-  ( 2  e.  CC  /\  2  =/=  0 )
4645a1i 10 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( 2  e.  CC  /\  2  =/=  0 ) )
47 divdir 9449 . . . . 5  |-  ( ( ( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  e.  CC  /\  ( ( cos `  ( C  -  D ) )  +  ( cos `  ( A  +  B )
) )  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
4841, 42, 46, 47syl3anc 1182 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
4940, 33, 32nppcan3d 9186 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  +  ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) ) )  =  ( ( cos `  ( A  -  B )
)  +  ( cos `  ( C  -  D
) ) ) )
5049oveq1d 5875 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
5148, 50eqtr3d 2319 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
5237, 51eqtrd 2317 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
53 sinmul 12454 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  /  2 ) )
54533ad2ant1 976 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  A
)  x.  ( sin `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  /  2 ) )
55 sinmul 12454 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( ( sin `  C
)  x.  ( sin `  D ) )  =  ( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 ) )
56553ad2ant2 977 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  C
)  x.  ( sin `  D ) )  =  ( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 ) )
5754, 56oveq12d 5878 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( ( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  / 
2 )  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) ) )
58 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
59 simpll 730 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
60 simprl 732 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
6158, 59, 60pnpcan2d 9197 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  +  C )  -  ( A  +  C )
)  =  ( B  -  A ) )
6261fveq2d 5531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  =  ( cos `  ( B  -  A
) ) )
63623adant3 975 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  =  ( cos `  ( B  -  A
) ) )
641adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  D
)  e.  CC )
6513, 64, 303jca 1132 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC ) )
66653adant3 975 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC ) )
67 addass 8826 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( ( ( A  +  B )  +  ( C  +  D ) )  +  ( C  -  D
) )  =  ( ( A  +  B
)  +  ( ( C  +  D )  +  ( C  -  D ) ) ) )
6866, 67syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( A  +  B )  +  ( C  +  D
) )  +  ( C  -  D ) )  =  ( ( A  +  B )  +  ( ( C  +  D )  +  ( C  -  D
) ) ) )
69 oveq1 5867 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  +  ( C  +  D ) )  =  pi  ->  (
( ( A  +  B )  +  ( C  +  D ) )  +  ( C  -  D ) )  =  ( pi  +  ( C  -  D
) ) )
70693ad2ant3 978 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( A  +  B )  +  ( C  +  D
) )  +  ( C  -  D ) )  =  ( pi  +  ( C  -  D ) ) )
71 simpl 443 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  C  e.  CC )
72 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  D  e.  CC )
7371, 72, 713jca 1132 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )
)
74733ad2ant2 977 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )
)
75 ppncan 9091 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  (
( C  +  D
)  +  ( C  -  D ) )  =  ( C  +  C ) )
7675oveq2d 5876 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  ( ( C  +  D )  +  ( C  -  D ) ) )  =  ( ( A  +  B )  +  ( C  +  C
) ) )
7774, 76syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( ( C  +  D
)  +  ( C  -  D ) ) )  =  ( ( A  +  B )  +  ( C  +  C ) ) )
78 simp1 955 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  e.  CC  /\  B  e.  CC ) )
7971, 71jca 518 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  e.  CC  /\  C  e.  CC ) )
80793ad2ant2 977 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  e.  CC  /\  C  e.  CC ) )
81 add4 9029 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
8278, 80, 81syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
83 addcl 8821 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  +  C
)  e.  CC )
8483ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  C
)  e.  CC )
85 addcl 8821 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  e.  CC )
8685ad2ant2lr 728 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  +  C
)  e.  CC )
8784, 86jca 518 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  C )  e.  CC  /\  ( B  +  C
)  e.  CC ) )
88873adant3 975 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  C )  e.  CC  /\  ( B  +  C
)  e.  CC ) )
89 addcom 9000 . . . . . . . . . . . 12  |-  ( ( ( A  +  C
)  e.  CC  /\  ( B  +  C
)  e.  CC )  ->  ( ( A  +  C )  +  ( B  +  C
) )  =  ( ( B  +  C
)  +  ( A  +  C ) ) )
9088, 89syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  C )  +  ( B  +  C ) )  =  ( ( B  +  C )  +  ( A  +  C ) ) )
9177, 82, 903eqtrd 2321 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( ( C  +  D
)  +  ( C  -  D ) ) )  =  ( ( B  +  C )  +  ( A  +  C ) ) )
9268, 70, 913eqtr3rd 2326 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( B  +  C )  +  ( A  +  C ) )  =  ( pi  +  ( C  -  D ) ) )
93 pire 19834 . . . . . . . . . . . 12  |-  pi  e.  RR
9493recni 8851 . . . . . . . . . . 11  |-  pi  e.  CC
95 addcom 9000 . . . . . . . . . . 11  |-  ( ( pi  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( pi  +  ( C  -  D
) )  =  ( ( C  -  D
)  +  pi ) )
9694, 30, 95sylancr 644 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( pi  +  ( C  -  D ) )  =  ( ( C  -  D )  +  pi ) )
97963adant3 975 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( pi  +  ( C  -  D ) )  =  ( ( C  -  D )  +  pi ) )
9892, 97eqtrd 2317 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( B  +  C )  +  ( A  +  C ) )  =  ( ( C  -  D )  +  pi ) )
9998fveq2d 5531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  +  ( A  +  C ) ) )  =  ( cos `  ( ( C  -  D )  +  pi ) ) )
100 cosppi 19860 . . . . . . . . 9  |-  ( ( C  -  D )  e.  CC  ->  ( cos `  ( ( C  -  D )  +  pi ) )  = 
-u ( cos `  ( C  -  D )
) )
10130, 100syl 15 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  (
( C  -  D
)  +  pi ) )  =  -u ( cos `  ( C  -  D ) ) )
1021013adant3 975 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  -  D
)  +  pi ) )  =  -u ( cos `  ( C  -  D ) ) )
10399, 102eqtrd 2317 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  +  ( A  +  C ) ) )  =  -u ( cos `  ( C  -  D ) ) )
10463, 103oveq12d 5878 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C ) ) ) )  =  ( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) ) )
105 subcl 9053 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  -  A
)  e.  CC )
106105ancoms 439 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
107106adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  -  A
)  e.  CC )
108107coscld 12413 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  ( B  -  A )
)  e.  CC )
109108, 31subnegd 9166 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) )  =  ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) ) )
1101093adant3 975 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) )  =  ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) ) )
111104, 110eqtrd 2317 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C ) ) ) )  =  ( ( cos `  ( B  -  A )
)  +  ( cos `  ( C  -  D
) ) ) )
112111oveq1d 5875 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 )  =  ( ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
113 sinmul 12454 . . . . 5  |-  ( ( ( B  +  C
)  e.  CC  /\  ( A  +  C
)  e.  CC )  ->  ( ( sin `  ( B  +  C
) )  x.  ( sin `  ( A  +  C ) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C ) ) )  -  ( cos `  (
( B  +  C
)  +  ( A  +  C ) ) ) )  /  2
) )
11486, 84, 113syl2anc 642 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 ) )
1151143adant3 975 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 ) )
116 cosneg 12429 . . . . . . . 8  |-  ( ( A  -  B )  e.  CC  ->  ( cos `  -u ( A  -  B ) )  =  ( cos `  ( A  -  B )
) )
11738, 116syl 15 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  -u ( A  -  B )
)  =  ( cos `  ( A  -  B
) ) )
118 negsubdi2 9108 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
119118fveq2d 5531 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  -u ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
120117, 119eqtr3d 2319 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
1211203ad2ant1 976 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
122121oveq1d 5875 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( A  -  B )
)  +  ( cos `  ( C  -  D
) ) )  =  ( ( cos `  ( B  -  A )
)  +  ( cos `  ( C  -  D
) ) ) )
123122oveq1d 5875 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 )  =  ( ( ( cos `  ( B  -  A ) )  +  ( cos `  ( C  -  D )
) )  /  2
) )
124112, 115, 1233eqtr4d 2327 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
12552, 57, 1243eqtr4d 2327 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C ) )  x.  ( sin `  ( A  +  C )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739    + caddc 8742    x. cmul 8744    - cmin 9039   -ucneg 9040    / cdiv 9425   2c2 9797   sincsin 12347   cosccos 12348   picpi 12350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219
  Copyright terms: Public domain W3C validator