MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptolemy Unicode version

Theorem ptolemy 20082
Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 12660, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. (Contributed by David A. Wheeler, 31-May-2015.)
Assertion
Ref Expression
ptolemy  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C ) )  x.  ( sin `  ( A  +  C )
) ) )

Proof of Theorem ptolemy
StepHypRef Expression
1 addcl 8966 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  e.  CC )
213ad2ant2 978 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  +  D
)  e.  CC )
32coscld 12619 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  +  D )
)  e.  CC )
43negnegd 9295 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u -u ( cos `  ( C  +  D )
)  =  ( cos `  ( C  +  D
) ) )
5 cosmpi 20074 . . . . . . . . . . 11  |-  ( ( C  +  D )  e.  CC  ->  ( cos `  ( ( C  +  D )  -  pi ) )  =  -u ( cos `  ( C  +  D ) ) )
62, 5syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  -u ( cos `  ( C  +  D ) ) )
7 addid2 9142 . . . . . . . . . . . . . . . 16  |-  ( ( C  +  D )  e.  CC  ->  (
0  +  ( C  +  D ) )  =  ( C  +  D ) )
87oveq1d 5996 . . . . . . . . . . . . . . 15  |-  ( ( C  +  D )  e.  CC  ->  (
( 0  +  ( C  +  D ) )  -  ( ( A  +  B )  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  ( ( A  +  B )  +  ( C  +  D ) ) ) )
92, 8syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( 0  +  ( C  +  D
) )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  ( ( A  +  B )  +  ( C  +  D
) ) ) )
10 0cn 8978 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
1110a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
0  e.  CC )
12 addcl 8966 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
1312adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  B
)  e.  CC )
14133adant3 976 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  +  B
)  e.  CC )
1511, 14, 2pnpcan2d 9342 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( 0  +  ( C  +  D
) )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( 0  -  ( A  +  B ) ) )
16 simp3 958 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( C  +  D ) )  =  pi )
1716oveq2d 5997 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  pi ) )
189, 15, 173eqtr3rd 2407 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  pi )  =  ( 0  -  ( A  +  B ) ) )
19 df-neg 9187 . . . . . . . . . . . . 13  |-  -u ( A  +  B )  =  ( 0  -  ( A  +  B
) )
2018, 19syl6eqr 2416 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  pi )  =  -u ( A  +  B ) )
2120fveq2d 5636 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  ( cos `  -u ( A  +  B ) ) )
22 cosneg 12635 . . . . . . . . . . . 12  |-  ( ( A  +  B )  e.  CC  ->  ( cos `  -u ( A  +  B ) )  =  ( cos `  ( A  +  B )
) )
2314, 22syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  -u ( A  +  B )
)  =  ( cos `  ( A  +  B
) ) )
2421, 23eqtrd 2398 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  ( cos `  ( A  +  B
) ) )
256, 24eqtr3d 2400 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u ( cos `  ( C  +  D )
)  =  ( cos `  ( A  +  B
) ) )
2625negeqd 9193 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u -u ( cos `  ( C  +  D )
)  =  -u ( cos `  ( A  +  B ) ) )
274, 26eqtr3d 2400 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  +  D )
)  =  -u ( cos `  ( A  +  B ) ) )
2827oveq2d 5997 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  =  ( ( cos `  ( C  -  D )
)  -  -u ( cos `  ( A  +  B ) ) ) )
29 subcl 9198 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
3029adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  -  D
)  e.  CC )
3130coscld 12619 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  ( C  -  D )
)  e.  CC )
32313adant3 976 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  -  D )
)  e.  CC )
3314coscld 12619 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  +  B )
)  e.  CC )
3432, 33subnegd 9311 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  -u ( cos `  ( A  +  B ) ) )  =  ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) ) )
3528, 34eqtrd 2398 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  =  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )
3635oveq1d 5996 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 )  =  ( ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )
3736oveq2d 5997 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
38 subcl 9198 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
39383ad2ant1 977 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  -  B
)  e.  CC )
4039coscld 12619 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  -  B )
)  e.  CC )
4140, 33subcld 9304 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  e.  CC )
4232, 33addcld 9001 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  e.  CC )
43 2cn 9963 . . . . . . 7  |-  2  e.  CC
44 2ne0 9976 . . . . . . 7  |-  2  =/=  0
4543, 44pm3.2i 441 . . . . . 6  |-  ( 2  e.  CC  /\  2  =/=  0 )
4645a1i 10 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( 2  e.  CC  /\  2  =/=  0 ) )
47 divdir 9594 . . . . 5  |-  ( ( ( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  e.  CC  /\  ( ( cos `  ( C  -  D ) )  +  ( cos `  ( A  +  B )
) )  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  ->  ( (
( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
4841, 42, 46, 47syl3anc 1183 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
4940, 33, 32nppcan3d 9331 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  +  ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) ) )  =  ( ( cos `  ( A  -  B )
)  +  ( cos `  ( C  -  D
) ) ) )
5049oveq1d 5996 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
5148, 50eqtr3d 2400 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
5237, 51eqtrd 2398 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
53 sinmul 12660 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  /  2 ) )
54533ad2ant1 977 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  A
)  x.  ( sin `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  /  2 ) )
55 sinmul 12660 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( ( sin `  C
)  x.  ( sin `  D ) )  =  ( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 ) )
56553ad2ant2 978 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  C
)  x.  ( sin `  D ) )  =  ( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 ) )
5754, 56oveq12d 5999 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( ( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  / 
2 )  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) ) )
58 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
59 simpll 730 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
60 simprl 732 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
6158, 59, 60pnpcan2d 9342 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  +  C )  -  ( A  +  C )
)  =  ( B  -  A ) )
6261fveq2d 5636 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  =  ( cos `  ( B  -  A
) ) )
63623adant3 976 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  =  ( cos `  ( B  -  A
) ) )
641adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  D
)  e.  CC )
6513, 64, 303jca 1133 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC ) )
66653adant3 976 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC ) )
67 addass 8971 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( ( ( A  +  B )  +  ( C  +  D ) )  +  ( C  -  D
) )  =  ( ( A  +  B
)  +  ( ( C  +  D )  +  ( C  -  D ) ) ) )
6866, 67syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( A  +  B )  +  ( C  +  D
) )  +  ( C  -  D ) )  =  ( ( A  +  B )  +  ( ( C  +  D )  +  ( C  -  D
) ) ) )
69 oveq1 5988 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  +  ( C  +  D ) )  =  pi  ->  (
( ( A  +  B )  +  ( C  +  D ) )  +  ( C  -  D ) )  =  ( pi  +  ( C  -  D
) ) )
70693ad2ant3 979 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( A  +  B )  +  ( C  +  D
) )  +  ( C  -  D ) )  =  ( pi  +  ( C  -  D ) ) )
71 simpl 443 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  C  e.  CC )
72 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  D  e.  CC )
7371, 72, 713jca 1133 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )
)
74733ad2ant2 978 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )
)
75 ppncan 9236 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  (
( C  +  D
)  +  ( C  -  D ) )  =  ( C  +  C ) )
7675oveq2d 5997 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  ( ( C  +  D )  +  ( C  -  D ) ) )  =  ( ( A  +  B )  +  ( C  +  C
) ) )
7774, 76syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( ( C  +  D
)  +  ( C  -  D ) ) )  =  ( ( A  +  B )  +  ( C  +  C ) ) )
78 simp1 956 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  e.  CC  /\  B  e.  CC ) )
7971, 71jca 518 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  e.  CC  /\  C  e.  CC ) )
80793ad2ant2 978 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  e.  CC  /\  C  e.  CC ) )
81 add4 9174 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
8278, 80, 81syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
83 addcl 8966 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  +  C
)  e.  CC )
8483ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  C
)  e.  CC )
85 addcl 8966 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  e.  CC )
8685ad2ant2lr 728 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  +  C
)  e.  CC )
8784, 86jca 518 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  C )  e.  CC  /\  ( B  +  C
)  e.  CC ) )
88873adant3 976 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  C )  e.  CC  /\  ( B  +  C
)  e.  CC ) )
89 addcom 9145 . . . . . . . . . . . 12  |-  ( ( ( A  +  C
)  e.  CC  /\  ( B  +  C
)  e.  CC )  ->  ( ( A  +  C )  +  ( B  +  C
) )  =  ( ( B  +  C
)  +  ( A  +  C ) ) )
9088, 89syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  C )  +  ( B  +  C ) )  =  ( ( B  +  C )  +  ( A  +  C ) ) )
9177, 82, 903eqtrd 2402 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( ( C  +  D
)  +  ( C  -  D ) ) )  =  ( ( B  +  C )  +  ( A  +  C ) ) )
9268, 70, 913eqtr3rd 2407 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( B  +  C )  +  ( A  +  C ) )  =  ( pi  +  ( C  -  D ) ) )
93 pire 20050 . . . . . . . . . . . 12  |-  pi  e.  RR
9493recni 8996 . . . . . . . . . . 11  |-  pi  e.  CC
95 addcom 9145 . . . . . . . . . . 11  |-  ( ( pi  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( pi  +  ( C  -  D
) )  =  ( ( C  -  D
)  +  pi ) )
9694, 30, 95sylancr 644 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( pi  +  ( C  -  D ) )  =  ( ( C  -  D )  +  pi ) )
97963adant3 976 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( pi  +  ( C  -  D ) )  =  ( ( C  -  D )  +  pi ) )
9892, 97eqtrd 2398 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( B  +  C )  +  ( A  +  C ) )  =  ( ( C  -  D )  +  pi ) )
9998fveq2d 5636 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  +  ( A  +  C ) ) )  =  ( cos `  ( ( C  -  D )  +  pi ) ) )
100 cosppi 20076 . . . . . . . . 9  |-  ( ( C  -  D )  e.  CC  ->  ( cos `  ( ( C  -  D )  +  pi ) )  = 
-u ( cos `  ( C  -  D )
) )
10130, 100syl 15 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  (
( C  -  D
)  +  pi ) )  =  -u ( cos `  ( C  -  D ) ) )
1021013adant3 976 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  -  D
)  +  pi ) )  =  -u ( cos `  ( C  -  D ) ) )
10399, 102eqtrd 2398 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  +  ( A  +  C ) ) )  =  -u ( cos `  ( C  -  D ) ) )
10463, 103oveq12d 5999 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C ) ) ) )  =  ( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) ) )
105 subcl 9198 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  -  A
)  e.  CC )
106105ancoms 439 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
107106adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  -  A
)  e.  CC )
108107coscld 12619 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  ( B  -  A )
)  e.  CC )
109108, 31subnegd 9311 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) )  =  ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) ) )
1101093adant3 976 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) )  =  ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) ) )
111104, 110eqtrd 2398 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C ) ) ) )  =  ( ( cos `  ( B  -  A )
)  +  ( cos `  ( C  -  D
) ) ) )
112111oveq1d 5996 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 )  =  ( ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
113 sinmul 12660 . . . . 5  |-  ( ( ( B  +  C
)  e.  CC  /\  ( A  +  C
)  e.  CC )  ->  ( ( sin `  ( B  +  C
) )  x.  ( sin `  ( A  +  C ) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C ) ) )  -  ( cos `  (
( B  +  C
)  +  ( A  +  C ) ) ) )  /  2
) )
11486, 84, 113syl2anc 642 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 ) )
1151143adant3 976 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 ) )
116 cosneg 12635 . . . . . . . 8  |-  ( ( A  -  B )  e.  CC  ->  ( cos `  -u ( A  -  B ) )  =  ( cos `  ( A  -  B )
) )
11738, 116syl 15 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  -u ( A  -  B )
)  =  ( cos `  ( A  -  B
) ) )
118 negsubdi2 9253 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
119118fveq2d 5636 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  -u ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
120117, 119eqtr3d 2400 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
1211203ad2ant1 977 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
122121oveq1d 5996 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( A  -  B )
)  +  ( cos `  ( C  -  D
) ) )  =  ( ( cos `  ( B  -  A )
)  +  ( cos `  ( C  -  D
) ) ) )
123122oveq1d 5996 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 )  =  ( ( ( cos `  ( B  -  A ) )  +  ( cos `  ( C  -  D )
) )  /  2
) )
124112, 115, 1233eqtr4d 2408 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
12552, 57, 1243eqtr4d 2408 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C ) )  x.  ( sin `  ( A  +  C )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   ` cfv 5358  (class class class)co 5981   CCcc 8882   0cc0 8884    + caddc 8887    x. cmul 8889    - cmin 9184   -ucneg 9185    / cdiv 9570   2c2 9942   sincsin 12553   cosccos 12554   picpi 12556
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-sup 7341  df-oi 7372  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-q 10468  df-rp 10506  df-xneg 10603  df-xadd 10604  df-xmul 10605  df-ioo 10813  df-ioc 10814  df-ico 10815  df-icc 10816  df-fz 10936  df-fzo 11026  df-fl 11089  df-seq 11211  df-exp 11270  df-fac 11454  df-bc 11481  df-hash 11506  df-shft 11769  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-limsup 12152  df-clim 12169  df-rlim 12170  df-sum 12367  df-ef 12557  df-sin 12559  df-cos 12560  df-pi 12562  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-hom 13440  df-cco 13441  df-rest 13537  df-topn 13538  df-topgen 13554  df-pt 13555  df-prds 13558  df-xrs 13613  df-0g 13614  df-gsum 13615  df-qtop 13620  df-imas 13621  df-xps 13623  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-submnd 14626  df-mulg 14702  df-cntz 15003  df-cmn 15301  df-xmet 16586  df-met 16587  df-bl 16588  df-mopn 16589  df-fbas 16590  df-fg 16591  df-cnfld 16594  df-top 16853  df-bases 16855  df-topon 16856  df-topsp 16857  df-cld 16973  df-ntr 16974  df-cls 16975  df-nei 17052  df-lp 17085  df-perf 17086  df-cn 17174  df-cnp 17175  df-haus 17260  df-tx 17474  df-hmeo 17663  df-fil 17754  df-fm 17846  df-flim 17847  df-flf 17848  df-xms 18098  df-ms 18099  df-tms 18100  df-cncf 18596  df-limc 19431  df-dv 19432
  Copyright terms: Public domain W3C validator