MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1o Unicode version

Theorem pw2f1o 6900
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1  |-  ( ph  ->  A  e.  V )
pw2f1o.2  |-  ( ph  ->  B  e.  W )
pw2f1o.3  |-  ( ph  ->  C  e.  W )
pw2f1o.4  |-  ( ph  ->  B  =/=  C )
pw2f1o.5  |-  F  =  ( x  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )
Assertion
Ref Expression
pw2f1o  |-  ( ph  ->  F : ~P A -1-1-onto-> ( { B ,  C }  ^m  A ) )
Distinct variable groups:    x, z, A    x, B, z    x, C, z    ph, x
Allowed substitution hints:    ph( z)    F( x, z)    V( x, z)    W( x, z)

Proof of Theorem pw2f1o
StepHypRef Expression
1 pw2f1o.5 . 2  |-  F  =  ( x  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )
2 eqid 2256 . . . 4  |-  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )
3 pw2f1o.1 . . . . . 6  |-  ( ph  ->  A  e.  V )
4 pw2f1o.2 . . . . . 6  |-  ( ph  ->  B  e.  W )
5 pw2f1o.3 . . . . . 6  |-  ( ph  ->  C  e.  W )
6 pw2f1o.4 . . . . . 6  |-  ( ph  ->  B  =/=  C )
73, 4, 5, 6pw2f1olem 6899 . . . . 5  |-  ( ph  ->  ( ( x  e. 
~P A  /\  (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )  <->  ( (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) " { C } ) ) ) )
87biimpa 472 . . . 4  |-  ( (
ph  /\  ( x  e.  ~P A  /\  (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) ) )  -> 
( ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) " { C } ) ) )
92, 8mpanr2 668 . . 3  |-  ( (
ph  /\  x  e.  ~P A )  ->  (
( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) " { C } ) ) )
109simpld 447 . 2  |-  ( (
ph  /\  x  e.  ~P A )  ->  (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A ) )
11 vex 2743 . . . 4  |-  y  e. 
_V
1211cnvex 5161 . . 3  |-  `' y  e.  _V
13 imaexg 4979 . . 3  |-  ( `' y  e.  _V  ->  ( `' y " { C } )  e.  _V )
1412, 13mp1i 13 . 2  |-  ( (
ph  /\  y  e.  ( { B ,  C }  ^m  A ) )  ->  ( `' y
" { C }
)  e.  _V )
153, 4, 5, 6pw2f1olem 6899 . 2  |-  ( ph  ->  ( ( x  e. 
~P A  /\  y  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )  <-> 
( y  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' y " { C }
) ) ) )
161, 10, 14, 15f1od 5966 1  |-  ( ph  ->  F : ~P A -1-1-onto-> ( { B ,  C }  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   _Vcvv 2740   ifcif 3506   ~Pcpw 3566   {csn 3581   {cpr 3582    e. cmpt 4017   `'ccnv 4625   "cima 4629   -1-1-onto->wf1o 4637  (class class class)co 5757    ^m cmap 6705
This theorem is referenced by:  pw2eng  6901
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-map 6707
  Copyright terms: Public domain W3C validator