MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1o Unicode version

Theorem pw2f1o 6963
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1  |-  ( ph  ->  A  e.  V )
pw2f1o.2  |-  ( ph  ->  B  e.  W )
pw2f1o.3  |-  ( ph  ->  C  e.  W )
pw2f1o.4  |-  ( ph  ->  B  =/=  C )
pw2f1o.5  |-  F  =  ( x  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )
Assertion
Ref Expression
pw2f1o  |-  ( ph  ->  F : ~P A -1-1-onto-> ( { B ,  C }  ^m  A ) )
Distinct variable groups:    x, z, A    x, B, z    x, C, z    ph, x
Allowed substitution hints:    ph( z)    F( x, z)    V( x, z)    W( x, z)

Proof of Theorem pw2f1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pw2f1o.5 . 2  |-  F  =  ( x  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )
2 eqid 2284 . . . 4  |-  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )
3 pw2f1o.1 . . . . . 6  |-  ( ph  ->  A  e.  V )
4 pw2f1o.2 . . . . . 6  |-  ( ph  ->  B  e.  W )
5 pw2f1o.3 . . . . . 6  |-  ( ph  ->  C  e.  W )
6 pw2f1o.4 . . . . . 6  |-  ( ph  ->  B  =/=  C )
73, 4, 5, 6pw2f1olem 6962 . . . . 5  |-  ( ph  ->  ( ( x  e. 
~P A  /\  (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )  <->  ( (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) " { C } ) ) ) )
87biimpa 470 . . . 4  |-  ( (
ph  /\  ( x  e.  ~P A  /\  (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) ) )  -> 
( ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) " { C } ) ) )
92, 8mpanr2 665 . . 3  |-  ( (
ph  /\  x  e.  ~P A )  ->  (
( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) " { C } ) ) )
109simpld 445 . 2  |-  ( (
ph  /\  x  e.  ~P A )  ->  (
z  e.  A  |->  if ( z  e.  x ,  C ,  B ) )  e.  ( { B ,  C }  ^m  A ) )
11 vex 2792 . . . 4  |-  y  e. 
_V
1211cnvex 5207 . . 3  |-  `' y  e.  _V
13 imaexg 5025 . . 3  |-  ( `' y  e.  _V  ->  ( `' y " { C } )  e.  _V )
1412, 13mp1i 11 . 2  |-  ( (
ph  /\  y  e.  ( { B ,  C }  ^m  A ) )  ->  ( `' y
" { C }
)  e.  _V )
153, 4, 5, 6pw2f1olem 6962 . 2  |-  ( ph  ->  ( ( x  e. 
~P A  /\  y  =  ( z  e.  A  |->  if ( z  e.  x ,  C ,  B ) ) )  <-> 
( y  e.  ( { B ,  C }  ^m  A )  /\  x  =  ( `' y " { C }
) ) ) )
161, 10, 14, 15f1od 6029 1  |-  ( ph  ->  F : ~P A -1-1-onto-> ( { B ,  C }  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685    =/= wne 2447   _Vcvv 2789   ifcif 3566   ~Pcpw 3626   {csn 3641   {cpr 3642    e. cmpt 4078   `'ccnv 4687   "cima 4691   -1-1-onto->wf1o 5220  (class class class)co 5820    ^m cmap 6768
This theorem is referenced by:  pw2eng  6964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-map 6770
  Copyright terms: Public domain W3C validator