MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcdadom Unicode version

Theorem pwcdadom 7858
Description: A property of dominance over a powerset, and a main lemma for gchac 8311. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwcdadom  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  B )

Proof of Theorem pwcdadom
StepHypRef Expression
1 canthwdom 7309 . . . 4  |-  -.  ~P A  ~<_*  A
2 0elpw 4196 . . . . . . . . . . . 12  |-  (/)  e.  ~P ( A  +c  A
)
3 n0i 3473 . . . . . . . . . . . 12  |-  ( (/)  e.  ~P ( A  +c  A )  ->  -.  ~P ( A  +c  A
)  =  (/) )
42, 3ax-mp 8 . . . . . . . . . . 11  |-  -.  ~P ( A  +c  A
)  =  (/)
5 dom0 7005 . . . . . . . . . . 11  |-  ( ~P ( A  +c  A
)  ~<_  (/)  <->  ~P ( A  +c  A )  =  (/) )
64, 5mtbir 290 . . . . . . . . . 10  |-  -.  ~P ( A  +c  A
)  ~<_  (/)
7 cdafn 7811 . . . . . . . . . . . . 13  |-  +c  Fn  ( _V  X.  _V )
8 fndm 5359 . . . . . . . . . . . . 13  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
97, 8ax-mp 8 . . . . . . . . . . . 12  |-  dom  +c  =  ( _V  X.  _V )
109ndmov 6020 . . . . . . . . . . 11  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  (/) )
1110breq2d 4051 . . . . . . . . . 10  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( ~P ( A  +c  A )  ~<_  ( A  +c  B )  <->  ~P ( A  +c  A
)  ~<_  (/) ) )
126, 11mtbiri 294 . . . . . . . . 9  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ~P ( A  +c  A )  ~<_  ( A  +c  B ) )
1312con4i 122 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
1413simpld 445 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  A  e.  _V )
15 0ex 4166 . . . . . . 7  |-  (/)  e.  _V
16 xpsneng 6963 . . . . . . 7  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
1714, 15, 16sylancl 643 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  X.  { (/) } ) 
~~  A )
18 endom 6904 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~~  A  -> 
( A  X.  { (/)
} )  ~<_  A )
19 domwdom 7304 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~<_  A  ->  ( A  X.  { (/) } )  ~<_*  A )
2017, 18, 193syl 18 . . . . 5  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  X.  { (/) } )  ~<_*  A )
21 wdomtr 7305 . . . . . 6  |-  ( ( ~P A  ~<_*  ( A  X.  { (/)
} )  /\  ( A  X.  { (/) } )  ~<_*  A )  ->  ~P A  ~<_*  A )
2221expcom 424 . . . . 5  |-  ( ( A  X.  { (/) } )  ~<_*  A  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_*  A ) )
2320, 22syl 15 . . . 4  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_*  A ) )
241, 23mtoi 169 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  -.  ~P A  ~<_*  ( A  X.  { (/)
} ) )
25 pwcdaen 7827 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A
) )
2614, 14, 25syl2anc 642 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A ) )
27 domen1 7019 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A )  ->  ( ~P ( A  +c  A )  ~<_  ( A  +c  B )  <-> 
( ~P A  X.  ~P A )  ~<_  ( A  +c  B ) ) )
2826, 27syl 15 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  <->  ( ~P A  X.  ~P A )  ~<_  ( A  +c  B
) ) )
2928ibi 232 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  X.  ~P A
)  ~<_  ( A  +c  B ) )
30 cdaval 7812 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
3113, 30syl 15 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  +c  B )  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
3229, 31breqtrd 4063 . . . . 5  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  X.  ~P A
)  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
33 unxpwdom 7319 . . . . 5  |-  ( ( ~P A  X.  ~P A )  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  \/  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3432, 33syl 15 . . . 4  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  \/  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3534ord 366 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( -.  ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3624, 35mpd 14 . 2  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  ( B  X.  { 1o } ) )
3713simprd 449 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  B  e.  _V )
38 1on 6502 . . 3  |-  1o  e.  On
39 xpsneng 6963 . . 3  |-  ( ( B  e.  _V  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
4037, 38, 39sylancl 643 . 2  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( B  X.  { 1o }
)  ~~  B )
41 domentr 6936 . 2  |-  ( ( ~P A  ~<_  ( B  X.  { 1o }
)  /\  ( B  X.  { 1o } ) 
~~  B )  ->  ~P A  ~<_  B )
4236, 40, 41syl2anc 642 1  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163   (/)c0 3468   ~Pcpw 3638   {csn 3653   class class class wbr 4039   Oncon0 4408    X. cxp 4703   dom cdm 4705    Fn wfn 5266  (class class class)co 5874   1oc1o 6488    ~~ cen 6876    ~<_ cdom 6877    ~<_* cwdom 7287    +c ccda 7809
This theorem is referenced by:  gchdomtri  8267  gchhar  8309  gchpwdom  8312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-1o 6495  df-2o 6496  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-wdom 7289  df-cda 7810
  Copyright terms: Public domain W3C validator