MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcdadom Unicode version

Theorem pwcdadom 8085
Description: A property of dominance over a powerset, and a main lemma for gchac 8537. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwcdadom  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  B )

Proof of Theorem pwcdadom
StepHypRef Expression
1 canthwdom 7536 . . . 4  |-  -.  ~P A  ~<_*  A
2 0elpw 4361 . . . . . . . . . . . 12  |-  (/)  e.  ~P ( A  +c  A
)
3 n0i 3625 . . . . . . . . . . . 12  |-  ( (/)  e.  ~P ( A  +c  A )  ->  -.  ~P ( A  +c  A
)  =  (/) )
42, 3ax-mp 8 . . . . . . . . . . 11  |-  -.  ~P ( A  +c  A
)  =  (/)
5 dom0 7226 . . . . . . . . . . 11  |-  ( ~P ( A  +c  A
)  ~<_  (/)  <->  ~P ( A  +c  A )  =  (/) )
64, 5mtbir 291 . . . . . . . . . 10  |-  -.  ~P ( A  +c  A
)  ~<_  (/)
7 cdafn 8038 . . . . . . . . . . . . 13  |-  +c  Fn  ( _V  X.  _V )
8 fndm 5535 . . . . . . . . . . . . 13  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
97, 8ax-mp 8 . . . . . . . . . . . 12  |-  dom  +c  =  ( _V  X.  _V )
109ndmov 6222 . . . . . . . . . . 11  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  (/) )
1110breq2d 4216 . . . . . . . . . 10  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( ~P ( A  +c  A )  ~<_  ( A  +c  B )  <->  ~P ( A  +c  A
)  ~<_  (/) ) )
126, 11mtbiri 295 . . . . . . . . 9  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ~P ( A  +c  A )  ~<_  ( A  +c  B ) )
1312con4i 124 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
1413simpld 446 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  A  e.  _V )
15 0ex 4331 . . . . . . 7  |-  (/)  e.  _V
16 xpsneng 7184 . . . . . . 7  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
1714, 15, 16sylancl 644 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  X.  { (/) } ) 
~~  A )
18 endom 7125 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~~  A  -> 
( A  X.  { (/)
} )  ~<_  A )
19 domwdom 7531 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~<_  A  ->  ( A  X.  { (/) } )  ~<_*  A )
2017, 18, 193syl 19 . . . . 5  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  X.  { (/) } )  ~<_*  A )
21 wdomtr 7532 . . . . . 6  |-  ( ( ~P A  ~<_*  ( A  X.  { (/)
} )  /\  ( A  X.  { (/) } )  ~<_*  A )  ->  ~P A  ~<_*  A )
2221expcom 425 . . . . 5  |-  ( ( A  X.  { (/) } )  ~<_*  A  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_*  A ) )
2320, 22syl 16 . . . 4  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_*  A ) )
241, 23mtoi 171 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  -.  ~P A  ~<_*  ( A  X.  { (/)
} ) )
25 pwcdaen 8054 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A
) )
2614, 14, 25syl2anc 643 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A ) )
27 domen1 7240 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A )  ->  ( ~P ( A  +c  A )  ~<_  ( A  +c  B )  <-> 
( ~P A  X.  ~P A )  ~<_  ( A  +c  B ) ) )
2826, 27syl 16 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  <->  ( ~P A  X.  ~P A )  ~<_  ( A  +c  B
) ) )
2928ibi 233 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  X.  ~P A
)  ~<_  ( A  +c  B ) )
30 cdaval 8039 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
3113, 30syl 16 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  +c  B )  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
3229, 31breqtrd 4228 . . . . 5  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  X.  ~P A
)  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
33 unxpwdom 7546 . . . . 5  |-  ( ( ~P A  X.  ~P A )  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  \/  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3432, 33syl 16 . . . 4  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  \/  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3534ord 367 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( -.  ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3624, 35mpd 15 . 2  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  ( B  X.  { 1o } ) )
3713simprd 450 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  B  e.  _V )
38 1on 6722 . . 3  |-  1o  e.  On
39 xpsneng 7184 . . 3  |-  ( ( B  e.  _V  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
4037, 38, 39sylancl 644 . 2  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( B  X.  { 1o }
)  ~~  B )
41 domentr 7157 . 2  |-  ( ( ~P A  ~<_  ( B  X.  { 1o }
)  /\  ( B  X.  { 1o } ) 
~~  B )  ->  ~P A  ~<_  B )
4236, 40, 41syl2anc 643 1  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948    u. cun 3310   (/)c0 3620   ~Pcpw 3791   {csn 3806   class class class wbr 4204   Oncon0 4573    X. cxp 4867   dom cdm 4869    Fn wfn 5440  (class class class)co 6072   1oc1o 6708    ~~ cen 7097    ~<_ cdom 7098    ~<_* cwdom 7514    +c ccda 8036
This theorem is referenced by:  gchdomtri  8493  gchhar  8535  gchpwdom  8538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-suc 4579  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-1o 6715  df-2o 6716  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-wdom 7516  df-cda 8037
  Copyright terms: Public domain W3C validator