MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Unicode version

Theorem pwcfsdom 8447
Description: A corollary of Konig's Theorem konigth 8433. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1  |-  H  =  ( y  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  y ) ) )
Assertion
Ref Expression
pwcfsdom  |-  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )
Distinct variable group:    A, f, y
Allowed substitution hints:    H( y, f)

Proof of Theorem pwcfsdom
Dummy variables  w  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 4817 . . . 4  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
21biimpi 187 . . 3  |-  ( A  e.  On  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
3 cfom 8133 . . . . . . 7  |-  ( cf ` 
om )  =  om
4 aleph0 7936 . . . . . . . 8  |-  ( aleph `  (/) )  =  om
54fveq2i 5722 . . . . . . 7  |-  ( cf `  ( aleph `  (/) ) )  =  ( cf `  om )
63, 5, 43eqtr4i 2465 . . . . . 6  |-  ( cf `  ( aleph `  (/) ) )  =  ( aleph `  (/) )
7 fveq2 5719 . . . . . . 7  |-  ( A  =  (/)  ->  ( aleph `  A )  =  (
aleph `  (/) ) )
87fveq2d 5723 . . . . . 6  |-  ( A  =  (/)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  ( aleph `  (/) ) ) )
96, 8, 73eqtr4a 2493 . . . . 5  |-  ( A  =  (/)  ->  ( cf `  ( aleph `  A )
)  =  ( aleph `  A ) )
10 fvex 5733 . . . . . . . . 9  |-  ( aleph `  A )  e.  _V
1110canth2 7251 . . . . . . . 8  |-  ( aleph `  A )  ~<  ~P ( aleph `  A )
1210pw2en 7206 . . . . . . . 8  |-  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) )
13 sdomentr 7232 . . . . . . . 8  |-  ( ( ( aleph `  A )  ~<  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) ) )
1411, 12, 13mp2an 654 . . . . . . 7  |-  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) )
15 alephon 7939 . . . . . . . . 9  |-  ( aleph `  A )  e.  On
16 alephgeom 7952 . . . . . . . . . 10  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
17 omelon 7590 . . . . . . . . . . . 12  |-  om  e.  On
18 2onn 6874 . . . . . . . . . . . 12  |-  2o  e.  om
19 onelss 4615 . . . . . . . . . . . 12  |-  ( om  e.  On  ->  ( 2o  e.  om  ->  2o  C_ 
om ) )
2017, 18, 19mp2 9 . . . . . . . . . . 11  |-  2o  C_  om
21 sstr 3348 . . . . . . . . . . 11  |-  ( ( 2o  C_  om  /\  om  C_  ( aleph `  A )
)  ->  2o  C_  ( aleph `  A ) )
2220, 21mpan 652 . . . . . . . . . 10  |-  ( om  C_  ( aleph `  A )  ->  2o  C_  ( aleph `  A ) )
2316, 22sylbi 188 . . . . . . . . 9  |-  ( A  e.  On  ->  2o  C_  ( aleph `  A )
)
24 ssdomg 7144 . . . . . . . . 9  |-  ( (
aleph `  A )  e.  On  ->  ( 2o  C_  ( aleph `  A )  ->  2o  ~<_  ( aleph `  A
) ) )
2515, 23, 24mpsyl 61 . . . . . . . 8  |-  ( A  e.  On  ->  2o  ~<_  ( aleph `  A )
)
26 mapdom1 7263 . . . . . . . 8  |-  ( 2o  ~<_  ( aleph `  A )  ->  ( 2o  ^m  ( aleph `  A ) )  ~<_  ( ( aleph `  A
)  ^m  ( aleph `  A ) ) )
2725, 26syl 16 . . . . . . 7  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~<_  ( (
aleph `  A )  ^m  ( aleph `  A )
) )
28 sdomdomtr 7231 . . . . . . 7  |-  ( ( ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A ) )  /\  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( ( aleph `  A )  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( aleph `  A )
) )
2914, 27, 28sylancr 645 . . . . . 6  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( aleph `  A ) ) )
30 oveq2 6080 . . . . . . 7  |-  ( ( cf `  ( aleph `  A ) )  =  ( aleph `  A )  ->  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) )  =  ( ( aleph `  A )  ^m  ( aleph `  A )
) )
3130breq2d 4216 . . . . . 6  |-  ( ( cf `  ( aleph `  A ) )  =  ( aleph `  A )  ->  ( ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  <->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( aleph `  A )
) ) )
3229, 31syl5ibrcom 214 . . . . 5  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  A ) )  =  ( aleph `  A
)  ->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) ) )
339, 32syl5 30 . . . 4  |-  ( A  e.  On  ->  ( A  =  (/)  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
34 alephreg 8446 . . . . . . 7  |-  ( cf `  ( aleph `  suc  x ) )  =  ( aleph ` 
suc  x )
35 fveq2 5719 . . . . . . . 8  |-  ( A  =  suc  x  -> 
( aleph `  A )  =  ( aleph `  suc  x ) )
3635fveq2d 5723 . . . . . . 7  |-  ( A  =  suc  x  -> 
( cf `  ( aleph `  A ) )  =  ( cf `  ( aleph `  suc  x ) ) )
3734, 36, 353eqtr4a 2493 . . . . . 6  |-  ( A  =  suc  x  -> 
( cf `  ( aleph `  A ) )  =  ( aleph `  A
) )
3837rexlimivw 2818 . . . . 5  |-  ( E. x  e.  On  A  =  suc  x  ->  ( cf `  ( aleph `  A
) )  =  (
aleph `  A ) )
3938, 32syl5 30 . . . 4  |-  ( A  e.  On  ->  ( E. x  e.  On  A  =  suc  x  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
40 cfsmo 8140 . . . . . 6  |-  ( (
aleph `  A )  e.  On  ->  E. f
( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) ) )
41 limelon 4636 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
42 ffn 5582 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  f  Fn  ( cf `  ( aleph `  A )
) )
43 fnrnfv 5764 . . . . . . . . . . . . . . . . 17  |-  ( f  Fn  ( cf `  ( aleph `  A ) )  ->  ran  f  =  { y  |  E. x  e.  ( cf `  ( aleph `  A )
) y  =  ( f `  x ) } )
4443unieqd 4018 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  ( cf `  ( aleph `  A ) )  ->  U. ran  f  = 
U. { y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `  x ) } )
4542, 44syl 16 . . . . . . . . . . . . . . 15  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U. ran  f  = 
U. { y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `  x ) } )
46 fvex 5733 . . . . . . . . . . . . . . . 16  |-  ( f `
 x )  e. 
_V
4746dfiun2 4117 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)  =  U. {
y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `
 x ) }
4845, 47syl6eqr 2485 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U. ran  f  = 
U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) )
4948ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U. ran  f  = 
U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) )
50 fnfvelrn 5858 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  Fn  ( cf `  ( aleph `  A )
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  w )  e.  ran  f )
5142, 50sylan 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  w )  e.  ran  f )
52 sseq2 3362 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( f `  w )  ->  (
z  C_  y  <->  z  C_  ( f `  w
) ) )
5352rspcev 3044 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f `  w
)  e.  ran  f  /\  z  C_  ( f `
 w ) )  ->  E. y  e.  ran  f  z  C_  y )
5451, 53sylan 458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  w  e.  ( cf `  ( aleph `  A )
) )  /\  z  C_  ( f `  w
) )  ->  E. y  e.  ran  f  z  C_  y )
5554ex 424 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( z  C_  ( f `  w
)  ->  E. y  e.  ran  f  z  C_  y ) )
5655rexlimdva 2822 . . . . . . . . . . . . . . . . 17  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w )  ->  E. y  e.  ran  f  z  C_  y ) )
5756ralimdv 2777 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
)  ->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
5857imp 419 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y )
5958adantl 453 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  A. z  e.  (
aleph `  A ) E. y  e.  ran  f 
z  C_  y )
60 alephislim 7953 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  <->  Lim  ( aleph `  A ) )
6160biimpi 187 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  Lim  ( aleph `  A )
)
62 frn 5588 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ran  f  C_  ( aleph `  A ) )
6362adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  ran  f  C_  ( aleph `  A
) )
64 coflim 8130 . . . . . . . . . . . . . . 15  |-  ( ( Lim  ( aleph `  A
)  /\  ran  f  C_  ( aleph `  A )
)  ->  ( U. ran  f  =  ( aleph `  A )  <->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
6561, 63, 64syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( U. ran  f  =  ( aleph `  A )  <->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
6659, 65mpbird 224 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U. ran  f  =  ( aleph `  A )
)
6749, 66eqtr3d 2469 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x )  =  ( aleph `  A
) )
68 ffvelrn 5859 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  e.  (
aleph `  A ) )
6915oneli 4680 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  x )  e.  ( aleph `  A
)  ->  ( f `  x )  e.  On )
70 harcard 7854 . . . . . . . . . . . . . . . . . . 19  |-  ( card `  (har `  ( f `  x ) ) )  =  (har `  (
f `  x )
)
71 iscard 7851 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
card `  (har `  (
f `  x )
) )  =  (har
`  ( f `  x ) )  <->  ( (har `  ( f `  x
) )  e.  On  /\ 
A. y  e.  (har
`  ( f `  x ) ) y 
~<  (har `  ( f `  x ) ) ) )
7271simprbi 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  (har `  (
f `  x )
) )  =  (har
`  ( f `  x ) )  ->  A. y  e.  (har `  ( f `  x
) ) y  ~< 
(har `  ( f `  x ) ) )
7370, 72ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  A. y  e.  (har `  ( f `  x ) ) y 
~<  (har `  ( f `  x ) )
74 domrefg 7133 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  x )  e.  _V  ->  (
f `  x )  ~<_  ( f `  x
) )
7546, 74ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( f `
 x )  ~<_  ( f `  x )
76 elharval 7520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  x )  e.  (har `  (
f `  x )
)  <->  ( ( f `
 x )  e.  On  /\  ( f `
 x )  ~<_  ( f `  x ) ) )
7776biimpri 198 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f `  x
)  e.  On  /\  ( f `  x
)  ~<_  ( f `  x ) )  -> 
( f `  x
)  e.  (har `  ( f `  x
) ) )
7875, 77mpan2 653 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  x )  e.  On  ->  (
f `  x )  e.  (har `  ( f `  x ) ) )
79 breq1 4207 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( f `  x )  ->  (
y  ~<  (har `  (
f `  x )
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
8079rspccv 3041 . . . . . . . . . . . . . . . . . 18  |-  ( A. y  e.  (har `  (
f `  x )
) y  ~<  (har `  ( f `  x
) )  ->  (
( f `  x
)  e.  (har `  ( f `  x
) )  ->  (
f `  x )  ~<  (har `  ( f `  x ) ) ) )
8173, 78, 80mpsyl 61 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  x )  e.  On  ->  (
f `  x )  ~<  (har `  ( f `  x ) ) )
8268, 69, 813syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  ~<  (har `  ( f `  x
) ) )
83 harcl 7518 . . . . . . . . . . . . . . . . . . 19  |-  (har `  ( f `  x
) )  e.  On
84 fveq2 5719 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  x  ->  (
f `  y )  =  ( f `  x ) )
8584fveq2d 5723 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  (har `  ( f `  y
) )  =  (har
`  ( f `  x ) ) )
86 pwcfsdom.1 . . . . . . . . . . . . . . . . . . . 20  |-  H  =  ( y  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  y ) ) )
8785, 86fvmptg 5795 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( cf `  ( aleph `  A )
)  /\  (har `  (
f `  x )
)  e.  On )  ->  ( H `  x )  =  (har
`  ( f `  x ) ) )
8883, 87mpan2 653 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( cf `  ( aleph `  A ) )  ->  ( H `  x )  =  (har
`  ( f `  x ) ) )
8988breq2d 4216 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( cf `  ( aleph `  A ) )  ->  ( ( f `
 x )  ~< 
( H `  x
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
9089adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( ( f `
 x )  ~< 
( H `  x
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
9182, 90mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  ~<  ( H `  x )
)
9291ralrimiva 2781 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  A. x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  ( H `  x
) )
93 fvex 5733 . . . . . . . . . . . . . . 15  |-  ( cf `  ( aleph `  A )
)  e.  _V
94 eqid 2435 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)  =  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)
95 eqid 2435 . . . . . . . . . . . . . . 15  |-  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  =  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)
9693, 94, 95konigth 8433 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( f `  x )  ~<  ( H `  x )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9792, 96syl 16 . . . . . . . . . . . . 13  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9897ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9967, 98eqbrtrrd 4226 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
10041, 99sylan 458 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
101 ovex 6097 . . . . . . . . . . . 12  |-  ( (
aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  e.  _V
10268ex 424 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( x  e.  ( cf `  ( aleph `  A ) )  -> 
( f `  x
)  e.  ( aleph `  A ) ) )
103 alephlim 7937 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ y  e.  A  ( aleph `  y )
)
104103eleq2d 2502 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  ( aleph `  A )  <->  ( f `  x )  e.  U_ y  e.  A  ( aleph `  y ) ) )
105 eliun 4089 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  x )  e.  U_ y  e.  A  ( aleph `  y
)  <->  E. y  e.  A  ( f `  x
)  e.  ( aleph `  y ) )
106 alephcard 7940 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( card `  ( aleph `  y )
)  =  ( aleph `  y )
107106eleq2i 2499 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x )  e.  ( card `  ( aleph `  y ) )  <-> 
( f `  x
)  e.  ( aleph `  y ) )
108 cardsdomelir 7849 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x )  e.  ( card `  ( aleph `  y ) )  ->  ( f `  x )  ~<  ( aleph `  y ) )
109107, 108sylbir 205 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  x )  e.  ( aleph `  y
)  ->  ( f `  x )  ~<  ( aleph `  y ) )
110 elharval 7520 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  <->  ( ( aleph `  y )  e.  On  /\  ( aleph `  y )  ~<_  ( f `
 x ) ) )
111110simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  -> 
( aleph `  y )  ~<_  ( f `  x
) )
112 domnsym 7224 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
aleph `  y )  ~<_  ( f `  x )  ->  -.  ( f `  x )  ~<  ( aleph `  y ) )
113111, 112syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  ->  -.  ( f `  x
)  ~<  ( aleph `  y
) )
114113con2i 114 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x ) 
~<  ( aleph `  y )  ->  -.  ( aleph `  y
)  e.  (har `  ( f `  x
) ) )
115 alephon 7939 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( aleph `  y )  e.  On
116 ontri1 4607 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( (har `  ( f `  x ) )  e.  On  /\  ( aleph `  y )  e.  On )  ->  ( (har `  ( f `  x
) )  C_  ( aleph `  y )  <->  -.  ( aleph `  y )  e.  (har `  ( f `  x ) ) ) )
11783, 115, 116mp2an 654 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (har
`  ( f `  x ) )  C_  ( aleph `  y )  <->  -.  ( aleph `  y )  e.  (har `  ( f `  x ) ) )
118114, 117sylibr 204 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  x ) 
~<  ( aleph `  y )  ->  (har `  ( f `  x ) )  C_  ( aleph `  y )
)
119109, 118syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f `  x )  e.  ( aleph `  y
)  ->  (har `  (
f `  x )
)  C_  ( aleph `  y ) )
120 alephord2i 7947 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
121120imp 419 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( aleph `  y )  e.  ( aleph `  A )
)
122 ontr2 4620 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (har `  ( f `  x ) )  e.  On  /\  ( aleph `  A )  e.  On )  ->  ( ( (har
`  ( f `  x ) )  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  A )
)  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) ) )
12383, 15, 122mp2an 654 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (har `  ( f `  x ) )  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  A )
)  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
124119, 121, 123syl2anr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  On  /\  y  e.  A )  /\  ( f `  x )  e.  (
aleph `  y ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
125124exp31 588 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( ( f `  x )  e.  (
aleph `  y )  -> 
(har `  ( f `  x ) )  e.  ( aleph `  A )
) ) )
126125rexlimdv 2821 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  On  ->  ( E. y  e.  A  ( f `  x
)  e.  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
127105, 126syl5bi 209 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  On  ->  (
( f `  x
)  e.  U_ y  e.  A  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
12841, 127syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  U_ y  e.  A  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
129104, 128sylbid 207 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  ( aleph `  A )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
130102, 129sylan9r 640 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  ( x  e.  ( cf `  ( aleph `  A ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) ) )
131130imp 419 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
_V  /\  Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A ) )  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
13285cbvmptv 4292 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( cf `  ( aleph `  A ) ) 
|->  (har `  ( f `  y ) ) )  =  ( x  e.  ( cf `  ( aleph `  A ) ) 
|->  (har `  ( f `  x ) ) )
13386, 132eqtri 2455 . . . . . . . . . . . . . 14  |-  H  =  ( x  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  x ) ) )
134131, 133fmptd 5884 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  H :
( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)
135 ffvelrn 5859 . . . . . . . . . . . . . . 15  |-  ( ( H : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( H `  x )  e.  (
aleph `  A ) )
136 onelss 4615 . . . . . . . . . . . . . . 15  |-  ( (
aleph `  A )  e.  On  ->  ( ( H `  x )  e.  ( aleph `  A )  ->  ( H `  x
)  C_  ( aleph `  A ) ) )
13715, 135, 136mpsyl 61 . . . . . . . . . . . . . 14  |-  ( ( H : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( H `  x )  C_  ( aleph `  A ) )
138137ralrimiva 2781 . . . . . . . . . . . . 13  |-  ( H : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  A. x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) 
C_  ( aleph `  A
) )
139 ss2ixp 7066 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  ( aleph `  A )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  X_ x  e.  ( cf `  ( aleph `  A ) ) ( aleph `  A )
)
14093, 10ixpconst 7063 . . . . . . . . . . . . . 14  |-  X_ x  e.  ( cf `  ( aleph `  A ) ) ( aleph `  A )  =  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )
141139, 140syl6sseq 3386 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  ( aleph `  A )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) )
142134, 138, 1413syl 19 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  C_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) )
143 ssdomg 7144 . . . . . . . . . . . 12  |-  ( ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  e.  _V  ->  (
X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) 
C_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  ~<_  ( (
aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) ) )
144101, 142, 143mpsyl 61 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  ~<_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
145144adantrr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  ~<_  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
146 sdomdomtr 7231 . . . . . . . . . 10  |-  ( ( ( aleph `  A )  ~< 
X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  /\  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  ~<_  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
147100, 145, 146syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
148147expcom 425 . . . . . . . 8  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  (
( A  e.  _V  /\ 
Lim  A )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
1491483adant2 976 . . . . . . 7  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) )  -> 
( ( A  e. 
_V  /\  Lim  A )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
150149exlimiv 1644 . . . . . 6  |-  ( E. f ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) )  -> 
( ( A  e. 
_V  /\  Lim  A )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
15115, 40, 150mp2b 10 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
152151a1i 11 . . . 4  |-  ( A  e.  On  ->  (
( A  e.  _V  /\ 
Lim  A )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
15333, 39, 1523jaod 1248 . . 3  |-  ( A  e.  On  ->  (
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
1542, 153mpd 15 . 2  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
155 alephfnon 7935 . . . . 5  |-  aleph  Fn  On
156 fndm 5535 . . . . 5  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
157155, 156ax-mp 8 . . . 4  |-  dom  aleph  =  On
158157eleq2i 2499 . . 3  |-  ( A  e.  dom  aleph  <->  A  e.  On )
159 ndmfv 5746 . . . 4  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
160 1n0 6730 . . . . . 6  |-  1o  =/=  (/)
161 1on 6722 . . . . . . . 8  |-  1o  e.  On
162161elexi 2957 . . . . . . 7  |-  1o  e.  _V
1631620sdom 7229 . . . . . 6  |-  ( (/)  ~<  1o 
<->  1o  =/=  (/) )
164160, 163mpbir 201 . . . . 5  |-  (/)  ~<  1o
165 id 20 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  =  (/) )
166 fveq2 5719 . . . . . . . . 9  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  (/) ) )
167 cf0 8120 . . . . . . . . 9  |-  ( cf `  (/) )  =  (/)
168166, 167syl6eq 2483 . . . . . . . 8  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( aleph `  A ) )  =  (/) )
169165, 168oveq12d 6090 . . . . . . 7  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  =  ( (/)  ^m  (/) ) )
170 0ex 4331 . . . . . . . 8  |-  (/)  e.  _V
171 map0e 7042 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( (/)  ^m  (/) )  =  1o )
172170, 171ax-mp 8 . . . . . . 7  |-  ( (/)  ^m  (/) )  =  1o
173169, 172syl6eq 2483 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  =  1o )
174165, 173breq12d 4217 . . . . 5  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  <->  (/)  ~<  1o )
)
175164, 174mpbiri 225 . . . 4  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
176159, 175syl 16 . . 3  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
177158, 176sylnbir 299 . 2  |-  ( -.  A  e.  On  ->  (
aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
178154, 177pm2.61i 158 1  |-  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   U.cuni 4007   U_ciun 4085   class class class wbr 4204    e. cmpt 4258   Oncon0 4573   Lim wlim 4574   suc csuc 4575   omcom 4836   dom cdm 4869   ran crn 4870    Fn wfn 5440   -->wf 5441   ` cfv 5445  (class class class)co 6072   Smo wsmo 6598   1oc1o 6708   2oc2o 6709    ^m cmap 7009   X_cixp 7054    ~~ cen 7097    ~<_ cdom 7098    ~< csdm 7099  harchar 7513   cardccrd 7811   alephcale 7812   cfccf 7813
This theorem is referenced by:  cfpwsdom  8448  tskcard  8645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-ac2 8332
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-smo 6599  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-oi 7468  df-har 7515  df-card 7815  df-aleph 7816  df-cf 7817  df-acn 7818  df-ac 7986
  Copyright terms: Public domain W3C validator