MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Unicode version

Theorem pwcfsdom 8391
Description: A corollary of Konig's Theorem konigth 8377. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1  |-  H  =  ( y  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  y ) ) )
Assertion
Ref Expression
pwcfsdom  |-  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )
Distinct variable group:    A, f, y
Allowed substitution hints:    H( y, f)

Proof of Theorem pwcfsdom
Dummy variables  w  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 4766 . . . 4  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
21biimpi 187 . . 3  |-  ( A  e.  On  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
3 cfom 8077 . . . . . . 7  |-  ( cf ` 
om )  =  om
4 aleph0 7880 . . . . . . . 8  |-  ( aleph `  (/) )  =  om
54fveq2i 5671 . . . . . . 7  |-  ( cf `  ( aleph `  (/) ) )  =  ( cf `  om )
63, 5, 43eqtr4i 2417 . . . . . 6  |-  ( cf `  ( aleph `  (/) ) )  =  ( aleph `  (/) )
7 fveq2 5668 . . . . . . 7  |-  ( A  =  (/)  ->  ( aleph `  A )  =  (
aleph `  (/) ) )
87fveq2d 5672 . . . . . 6  |-  ( A  =  (/)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  ( aleph `  (/) ) ) )
96, 8, 73eqtr4a 2445 . . . . 5  |-  ( A  =  (/)  ->  ( cf `  ( aleph `  A )
)  =  ( aleph `  A ) )
10 fvex 5682 . . . . . . . . 9  |-  ( aleph `  A )  e.  _V
1110canth2 7196 . . . . . . . 8  |-  ( aleph `  A )  ~<  ~P ( aleph `  A )
1210pw2en 7151 . . . . . . . 8  |-  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) )
13 sdomentr 7177 . . . . . . . 8  |-  ( ( ( aleph `  A )  ~<  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) ) )
1411, 12, 13mp2an 654 . . . . . . 7  |-  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) )
15 alephon 7883 . . . . . . . . 9  |-  ( aleph `  A )  e.  On
16 alephgeom 7896 . . . . . . . . . 10  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
17 omelon 7534 . . . . . . . . . . . 12  |-  om  e.  On
18 2onn 6819 . . . . . . . . . . . 12  |-  2o  e.  om
19 onelss 4564 . . . . . . . . . . . 12  |-  ( om  e.  On  ->  ( 2o  e.  om  ->  2o  C_ 
om ) )
2017, 18, 19mp2 9 . . . . . . . . . . 11  |-  2o  C_  om
21 sstr 3299 . . . . . . . . . . 11  |-  ( ( 2o  C_  om  /\  om  C_  ( aleph `  A )
)  ->  2o  C_  ( aleph `  A ) )
2220, 21mpan 652 . . . . . . . . . 10  |-  ( om  C_  ( aleph `  A )  ->  2o  C_  ( aleph `  A ) )
2316, 22sylbi 188 . . . . . . . . 9  |-  ( A  e.  On  ->  2o  C_  ( aleph `  A )
)
24 ssdomg 7089 . . . . . . . . 9  |-  ( (
aleph `  A )  e.  On  ->  ( 2o  C_  ( aleph `  A )  ->  2o  ~<_  ( aleph `  A
) ) )
2515, 23, 24mpsyl 61 . . . . . . . 8  |-  ( A  e.  On  ->  2o  ~<_  ( aleph `  A )
)
26 mapdom1 7208 . . . . . . . 8  |-  ( 2o  ~<_  ( aleph `  A )  ->  ( 2o  ^m  ( aleph `  A ) )  ~<_  ( ( aleph `  A
)  ^m  ( aleph `  A ) ) )
2725, 26syl 16 . . . . . . 7  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~<_  ( (
aleph `  A )  ^m  ( aleph `  A )
) )
28 sdomdomtr 7176 . . . . . . 7  |-  ( ( ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A ) )  /\  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( ( aleph `  A )  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( aleph `  A )
) )
2914, 27, 28sylancr 645 . . . . . 6  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( aleph `  A ) ) )
30 oveq2 6028 . . . . . . 7  |-  ( ( cf `  ( aleph `  A ) )  =  ( aleph `  A )  ->  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) )  =  ( ( aleph `  A )  ^m  ( aleph `  A )
) )
3130breq2d 4165 . . . . . 6  |-  ( ( cf `  ( aleph `  A ) )  =  ( aleph `  A )  ->  ( ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  <->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( aleph `  A )
) ) )
3229, 31syl5ibrcom 214 . . . . 5  |-  ( A  e.  On  ->  (
( cf `  ( aleph `  A ) )  =  ( aleph `  A
)  ->  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) ) )
339, 32syl5 30 . . . 4  |-  ( A  e.  On  ->  ( A  =  (/)  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
34 alephreg 8390 . . . . . . 7  |-  ( cf `  ( aleph `  suc  x ) )  =  ( aleph ` 
suc  x )
35 fveq2 5668 . . . . . . . 8  |-  ( A  =  suc  x  -> 
( aleph `  A )  =  ( aleph `  suc  x ) )
3635fveq2d 5672 . . . . . . 7  |-  ( A  =  suc  x  -> 
( cf `  ( aleph `  A ) )  =  ( cf `  ( aleph `  suc  x ) ) )
3734, 36, 353eqtr4a 2445 . . . . . 6  |-  ( A  =  suc  x  -> 
( cf `  ( aleph `  A ) )  =  ( aleph `  A
) )
3837rexlimivw 2769 . . . . 5  |-  ( E. x  e.  On  A  =  suc  x  ->  ( cf `  ( aleph `  A
) )  =  (
aleph `  A ) )
3938, 32syl5 30 . . . 4  |-  ( A  e.  On  ->  ( E. x  e.  On  A  =  suc  x  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
40 cfsmo 8084 . . . . . 6  |-  ( (
aleph `  A )  e.  On  ->  E. f
( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) ) )
41 limelon 4585 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
42 ffn 5531 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  f  Fn  ( cf `  ( aleph `  A )
) )
43 fnrnfv 5712 . . . . . . . . . . . . . . . . 17  |-  ( f  Fn  ( cf `  ( aleph `  A ) )  ->  ran  f  =  { y  |  E. x  e.  ( cf `  ( aleph `  A )
) y  =  ( f `  x ) } )
4443unieqd 3968 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  ( cf `  ( aleph `  A ) )  ->  U. ran  f  = 
U. { y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `  x ) } )
4542, 44syl 16 . . . . . . . . . . . . . . 15  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U. ran  f  = 
U. { y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `  x ) } )
46 fvex 5682 . . . . . . . . . . . . . . . 16  |-  ( f `
 x )  e. 
_V
4746dfiun2 4067 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)  =  U. {
y  |  E. x  e.  ( cf `  ( aleph `  A ) ) y  =  ( f `
 x ) }
4845, 47syl6eqr 2437 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U. ran  f  = 
U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) )
4948ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U. ran  f  = 
U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) )
50 fnfvelrn 5806 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  Fn  ( cf `  ( aleph `  A )
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  w )  e.  ran  f )
5142, 50sylan 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  w )  e.  ran  f )
52 sseq2 3313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( f `  w )  ->  (
z  C_  y  <->  z  C_  ( f `  w
) ) )
5352rspcev 2995 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f `  w
)  e.  ran  f  /\  z  C_  ( f `
 w ) )  ->  E. y  e.  ran  f  z  C_  y )
5451, 53sylan 458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  w  e.  ( cf `  ( aleph `  A )
) )  /\  z  C_  ( f `  w
) )  ->  E. y  e.  ran  f  z  C_  y )
5554ex 424 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  w  e.  ( cf `  ( aleph `  A ) ) )  ->  ( z  C_  ( f `  w
)  ->  E. y  e.  ran  f  z  C_  y ) )
5655rexlimdva 2773 . . . . . . . . . . . . . . . . 17  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w )  ->  E. y  e.  ran  f  z  C_  y ) )
5756ralimdv 2728 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
)  ->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
5857imp 419 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y )
5958adantl 453 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  A. z  e.  (
aleph `  A ) E. y  e.  ran  f 
z  C_  y )
60 alephislim 7897 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  <->  Lim  ( aleph `  A ) )
6160biimpi 187 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  Lim  ( aleph `  A )
)
62 frn 5537 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ran  f  C_  ( aleph `  A ) )
6362adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  ran  f  C_  ( aleph `  A
) )
64 coflim 8074 . . . . . . . . . . . . . . 15  |-  ( ( Lim  ( aleph `  A
)  /\  ran  f  C_  ( aleph `  A )
)  ->  ( U. ran  f  =  ( aleph `  A )  <->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
6561, 63, 64syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( U. ran  f  =  ( aleph `  A )  <->  A. z  e.  ( aleph `  A ) E. y  e.  ran  f  z  C_  y ) )
6659, 65mpbird 224 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U. ran  f  =  ( aleph `  A )
)
6749, 66eqtr3d 2421 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x )  =  ( aleph `  A
) )
68 ffvelrn 5807 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  e.  (
aleph `  A ) )
6915oneli 4629 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  x )  e.  ( aleph `  A
)  ->  ( f `  x )  e.  On )
70 harcard 7798 . . . . . . . . . . . . . . . . . . 19  |-  ( card `  (har `  ( f `  x ) ) )  =  (har `  (
f `  x )
)
71 iscard 7795 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
card `  (har `  (
f `  x )
) )  =  (har
`  ( f `  x ) )  <->  ( (har `  ( f `  x
) )  e.  On  /\ 
A. y  e.  (har
`  ( f `  x ) ) y 
~<  (har `  ( f `  x ) ) ) )
7271simprbi 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  (har `  (
f `  x )
) )  =  (har
`  ( f `  x ) )  ->  A. y  e.  (har `  ( f `  x
) ) y  ~< 
(har `  ( f `  x ) ) )
7370, 72ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  A. y  e.  (har `  ( f `  x ) ) y 
~<  (har `  ( f `  x ) )
74 domrefg 7078 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  x )  e.  _V  ->  (
f `  x )  ~<_  ( f `  x
) )
7546, 74ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( f `
 x )  ~<_  ( f `  x )
76 elharval 7464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  x )  e.  (har `  (
f `  x )
)  <->  ( ( f `
 x )  e.  On  /\  ( f `
 x )  ~<_  ( f `  x ) ) )
7776biimpri 198 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f `  x
)  e.  On  /\  ( f `  x
)  ~<_  ( f `  x ) )  -> 
( f `  x
)  e.  (har `  ( f `  x
) ) )
7875, 77mpan2 653 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  x )  e.  On  ->  (
f `  x )  e.  (har `  ( f `  x ) ) )
79 breq1 4156 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( f `  x )  ->  (
y  ~<  (har `  (
f `  x )
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
8079rspccv 2992 . . . . . . . . . . . . . . . . . 18  |-  ( A. y  e.  (har `  (
f `  x )
) y  ~<  (har `  ( f `  x
) )  ->  (
( f `  x
)  e.  (har `  ( f `  x
) )  ->  (
f `  x )  ~<  (har `  ( f `  x ) ) ) )
8173, 78, 80mpsyl 61 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  x )  e.  On  ->  (
f `  x )  ~<  (har `  ( f `  x ) ) )
8268, 69, 813syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  ~<  (har `  ( f `  x
) ) )
83 harcl 7462 . . . . . . . . . . . . . . . . . . 19  |-  (har `  ( f `  x
) )  e.  On
84 fveq2 5668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  x  ->  (
f `  y )  =  ( f `  x ) )
8584fveq2d 5672 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  (har `  ( f `  y
) )  =  (har
`  ( f `  x ) ) )
86 pwcfsdom.1 . . . . . . . . . . . . . . . . . . . 20  |-  H  =  ( y  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  y ) ) )
8785, 86fvmptg 5743 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( cf `  ( aleph `  A )
)  /\  (har `  (
f `  x )
)  e.  On )  ->  ( H `  x )  =  (har
`  ( f `  x ) ) )
8883, 87mpan2 653 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( cf `  ( aleph `  A ) )  ->  ( H `  x )  =  (har
`  ( f `  x ) ) )
8988breq2d 4165 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( cf `  ( aleph `  A ) )  ->  ( ( f `
 x )  ~< 
( H `  x
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
9089adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( ( f `
 x )  ~< 
( H `  x
)  <->  ( f `  x )  ~<  (har `  ( f `  x
) ) ) )
9182, 90mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( f `  x )  ~<  ( H `  x )
)
9291ralrimiva 2732 . . . . . . . . . . . . . 14  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  A. x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  ( H `  x
) )
93 fvex 5682 . . . . . . . . . . . . . . 15  |-  ( cf `  ( aleph `  A )
)  e.  _V
94 eqid 2387 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)  =  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x
)
95 eqid 2387 . . . . . . . . . . . . . . 15  |-  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  =  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)
9693, 94, 95konigth 8377 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( f `  x )  ~<  ( H `  x )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9792, 96syl 16 . . . . . . . . . . . . 13  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9897ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  U_ x  e.  ( cf `  ( aleph `  A ) ) ( f `  x ) 
~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
9967, 98eqbrtrrd 4175 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
10041, 99sylan 458 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) )
101 ovex 6045 . . . . . . . . . . . 12  |-  ( (
aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  e.  _V
10268ex 424 . . . . . . . . . . . . . . . 16  |-  ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  ( x  e.  ( cf `  ( aleph `  A ) )  -> 
( f `  x
)  e.  ( aleph `  A ) ) )
103 alephlim 7881 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ y  e.  A  ( aleph `  y )
)
104103eleq2d 2454 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  ( aleph `  A )  <->  ( f `  x )  e.  U_ y  e.  A  ( aleph `  y ) ) )
105 eliun 4039 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  x )  e.  U_ y  e.  A  ( aleph `  y
)  <->  E. y  e.  A  ( f `  x
)  e.  ( aleph `  y ) )
106 alephcard 7884 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( card `  ( aleph `  y )
)  =  ( aleph `  y )
107106eleq2i 2451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x )  e.  ( card `  ( aleph `  y ) )  <-> 
( f `  x
)  e.  ( aleph `  y ) )
108 cardsdomelir 7793 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x )  e.  ( card `  ( aleph `  y ) )  ->  ( f `  x )  ~<  ( aleph `  y ) )
109107, 108sylbir 205 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  x )  e.  ( aleph `  y
)  ->  ( f `  x )  ~<  ( aleph `  y ) )
110 elharval 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  <->  ( ( aleph `  y )  e.  On  /\  ( aleph `  y )  ~<_  ( f `
 x ) ) )
111110simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  -> 
( aleph `  y )  ~<_  ( f `  x
) )
112 domnsym 7169 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
aleph `  y )  ~<_  ( f `  x )  ->  -.  ( f `  x )  ~<  ( aleph `  y ) )
113111, 112syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
aleph `  y )  e.  (har `  ( f `  x ) )  ->  -.  ( f `  x
)  ~<  ( aleph `  y
) )
114113con2i 114 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f `  x ) 
~<  ( aleph `  y )  ->  -.  ( aleph `  y
)  e.  (har `  ( f `  x
) ) )
115 alephon 7883 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( aleph `  y )  e.  On
116 ontri1 4556 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( (har `  ( f `  x ) )  e.  On  /\  ( aleph `  y )  e.  On )  ->  ( (har `  ( f `  x
) )  C_  ( aleph `  y )  <->  -.  ( aleph `  y )  e.  (har `  ( f `  x ) ) ) )
11783, 115, 116mp2an 654 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (har
`  ( f `  x ) )  C_  ( aleph `  y )  <->  -.  ( aleph `  y )  e.  (har `  ( f `  x ) ) )
118114, 117sylibr 204 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  x ) 
~<  ( aleph `  y )  ->  (har `  ( f `  x ) )  C_  ( aleph `  y )
)
119109, 118syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f `  x )  e.  ( aleph `  y
)  ->  (har `  (
f `  x )
)  C_  ( aleph `  y ) )
120 alephord2i 7891 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
121120imp 419 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( aleph `  y )  e.  ( aleph `  A )
)
122 ontr2 4569 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (har `  ( f `  x ) )  e.  On  /\  ( aleph `  A )  e.  On )  ->  ( ( (har
`  ( f `  x ) )  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  A )
)  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) ) )
12383, 15, 122mp2an 654 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (har `  ( f `  x ) )  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  A )
)  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
124119, 121, 123syl2anr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  On  /\  y  e.  A )  /\  ( f `  x )  e.  (
aleph `  y ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
125124exp31 588 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( ( f `  x )  e.  (
aleph `  y )  -> 
(har `  ( f `  x ) )  e.  ( aleph `  A )
) ) )
126125rexlimdv 2772 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  On  ->  ( E. y  e.  A  ( f `  x
)  e.  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
127105, 126syl5bi 209 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  On  ->  (
( f `  x
)  e.  U_ y  e.  A  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
12841, 127syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  U_ y  e.  A  ( aleph `  y )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
129104, 128sylbid 207 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( f `  x
)  e.  ( aleph `  A )  ->  (har `  ( f `  x
) )  e.  (
aleph `  A ) ) )
130102, 129sylan9r 640 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  ( x  e.  ( cf `  ( aleph `  A ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) ) )
131130imp 419 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
_V  /\  Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A ) )  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  (har `  (
f `  x )
)  e.  ( aleph `  A ) )
13285cbvmptv 4241 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( cf `  ( aleph `  A ) ) 
|->  (har `  ( f `  y ) ) )  =  ( x  e.  ( cf `  ( aleph `  A ) ) 
|->  (har `  ( f `  x ) ) )
13386, 132eqtri 2407 . . . . . . . . . . . . . 14  |-  H  =  ( x  e.  ( cf `  ( aleph `  A ) )  |->  (har
`  ( f `  x ) ) )
134131, 133fmptd 5832 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  H :
( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)
135 ffvelrn 5807 . . . . . . . . . . . . . . 15  |-  ( ( H : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( H `  x )  e.  (
aleph `  A ) )
136 onelss 4564 . . . . . . . . . . . . . . 15  |-  ( (
aleph `  A )  e.  On  ->  ( ( H `  x )  e.  ( aleph `  A )  ->  ( H `  x
)  C_  ( aleph `  A ) ) )
13715, 135, 136mpsyl 61 . . . . . . . . . . . . . 14  |-  ( ( H : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  x  e.  ( cf `  ( aleph `  A ) ) )  ->  ( H `  x )  C_  ( aleph `  A ) )
138137ralrimiva 2732 . . . . . . . . . . . . 13  |-  ( H : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  ->  A. x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) 
C_  ( aleph `  A
) )
139 ss2ixp 7011 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  ( aleph `  A )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  X_ x  e.  ( cf `  ( aleph `  A ) ) ( aleph `  A )
)
14093, 10ixpconst 7008 . . . . . . . . . . . . . 14  |-  X_ x  e.  ( cf `  ( aleph `  A ) ) ( aleph `  A )  =  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )
141139, 140syl6sseq 3337 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  ( aleph `  A )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  C_  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) )
142134, 138, 1413syl 19 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  C_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) )
143 ssdomg 7089 . . . . . . . . . . . 12  |-  ( ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  e.  _V  ->  (
X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x ) 
C_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  ->  X_ x  e.  ( cf `  ( aleph `  A )
) ( H `  x )  ~<_  ( (
aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) ) ) )
144101, 142, 143mpsyl 61 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )
)  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x
)  ~<_  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
145144adantrr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  ~<_  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
146 sdomdomtr 7176 . . . . . . . . . 10  |-  ( ( ( aleph `  A )  ~< 
X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  /\  X_ x  e.  ( cf `  ( aleph `  A ) ) ( H `  x )  ~<_  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
147100, 145, 146syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  ( f : ( cf `  ( aleph `  A ) ) --> (
aleph `  A )  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) ) )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
148147expcom 425 . . . . . . . 8  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A
) ) z  C_  ( f `  w
) )  ->  (
( A  e.  _V  /\ 
Lim  A )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
1491483adant2 976 . . . . . . 7  |-  ( ( f : ( cf `  ( aleph `  A )
) --> ( aleph `  A
)  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) )  -> 
( ( A  e. 
_V  /\  Lim  A )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
150149exlimiv 1641 . . . . . 6  |-  ( E. f ( f : ( cf `  ( aleph `  A ) ) --> ( aleph `  A )  /\  Smo  f  /\  A. z  e.  ( aleph `  A ) E. w  e.  ( cf `  ( aleph `  A ) ) z  C_  ( f `  w ) )  -> 
( ( A  e. 
_V  /\  Lim  A )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
15115, 40, 150mp2b 10 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
152151a1i 11 . . . 4  |-  ( A  e.  On  ->  (
( A  e.  _V  /\ 
Lim  A )  -> 
( aleph `  A )  ~<  ( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) ) )
15333, 39, 1523jaod 1248 . . 3  |-  ( A  e.  On  ->  (
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) )  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) ) )
1542, 153mpd 15 . 2  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
155 alephfnon 7879 . . . . 5  |-  aleph  Fn  On
156 fndm 5484 . . . . 5  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
157155, 156ax-mp 8 . . . 4  |-  dom  aleph  =  On
158157eleq2i 2451 . . 3  |-  ( A  e.  dom  aleph  <->  A  e.  On )
159 ndmfv 5695 . . . 4  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
160 1n0 6675 . . . . . 6  |-  1o  =/=  (/)
161 1on 6667 . . . . . . . 8  |-  1o  e.  On
162161elexi 2908 . . . . . . 7  |-  1o  e.  _V
1631620sdom 7174 . . . . . 6  |-  ( (/)  ~<  1o 
<->  1o  =/=  (/) )
164160, 163mpbir 201 . . . . 5  |-  (/)  ~<  1o
165 id 20 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  =  (/) )
166 fveq2 5668 . . . . . . . . 9  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  (/) ) )
167 cf0 8064 . . . . . . . . 9  |-  ( cf `  (/) )  =  (/)
168166, 167syl6eq 2435 . . . . . . . 8  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( aleph `  A ) )  =  (/) )
169165, 168oveq12d 6038 . . . . . . 7  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  =  ( (/)  ^m  (/) ) )
170 0ex 4280 . . . . . . . 8  |-  (/)  e.  _V
171 map0e 6987 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( (/)  ^m  (/) )  =  1o )
172170, 171ax-mp 8 . . . . . . 7  |-  ( (/)  ^m  (/) )  =  1o
173169, 172syl6eq 2435 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) )  =  1o )
174165, 173breq12d 4166 . . . . 5  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )  <->  (/)  ~<  1o )
)
175164, 174mpbiri 225 . . . 4  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  ~<  ( ( aleph `  A )  ^m  ( cf `  ( aleph `  A
) ) ) )
176159, 175syl 16 . . 3  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
177158, 176sylnbir 299 . 2  |-  ( -.  A  e.  On  ->  (
aleph `  A )  ~< 
( ( aleph `  A
)  ^m  ( cf `  ( aleph `  A )
) ) )
178154, 177pm2.61i 158 1  |-  ( aleph `  A )  ~<  (
( aleph `  A )  ^m  ( cf `  ( aleph `  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   {cab 2373    =/= wne 2550   A.wral 2649   E.wrex 2650   _Vcvv 2899    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   U.cuni 3957   U_ciun 4035   class class class wbr 4153    e. cmpt 4207   Oncon0 4522   Lim wlim 4523   suc csuc 4524   omcom 4785   dom cdm 4818   ran crn 4819    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020   Smo wsmo 6543   1oc1o 6653   2oc2o 6654    ^m cmap 6954   X_cixp 6999    ~~ cen 7042    ~<_ cdom 7043    ~< csdm 7044  harchar 7457   cardccrd 7755   alephcale 7756   cfccf 7757
This theorem is referenced by:  cfpwsdom  8392  tskcard  8589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-ac2 8276
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-smo 6544  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-oi 7412  df-har 7459  df-card 7759  df-aleph 7760  df-cf 7761  df-acn 7762  df-ac 7930
  Copyright terms: Public domain W3C validator