MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpw0 Unicode version

Theorem pwpw0 3723
Description: Compute the power set of the power set of the empty set. (See pw0 3722 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 3781, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
pwpw0  |-  ~P { (/)
}  =  { (/) ,  { (/) } }

Proof of Theorem pwpw0
StepHypRef Expression
1 dfss2 3130 . . . . . . . . 9  |-  ( x 
C_  { (/) }  <->  A. y
( y  e.  x  ->  y  e.  { (/) } ) )
2 elsn 3615 . . . . . . . . . . 11  |-  ( y  e.  { (/) }  <->  y  =  (/) )
32imbi2i 305 . . . . . . . . . 10  |-  ( ( y  e.  x  -> 
y  e.  { (/) } )  <->  ( y  e.  x  ->  y  =  (/) ) )
43albii 1554 . . . . . . . . 9  |-  ( A. y ( y  e.  x  ->  y  e.  {
(/) } )  <->  A. y
( y  e.  x  ->  y  =  (/) ) )
51, 4bitri 242 . . . . . . . 8  |-  ( x 
C_  { (/) }  <->  A. y
( y  e.  x  ->  y  =  (/) ) )
6 neq0 3426 . . . . . . . . . 10  |-  ( -.  x  =  (/)  <->  E. y 
y  e.  x )
7 exintr 1616 . . . . . . . . . 10  |-  ( A. y ( y  e.  x  ->  y  =  (/) )  ->  ( E. y  y  e.  x  ->  E. y ( y  e.  x  /\  y  =  (/) ) ) )
86, 7syl5bi 210 . . . . . . . . 9  |-  ( A. y ( y  e.  x  ->  y  =  (/) )  ->  ( -.  x  =  (/)  ->  E. y
( y  e.  x  /\  y  =  (/) ) ) )
9 exancom 1584 . . . . . . . . . . 11  |-  ( E. y ( y  e.  x  /\  y  =  (/) )  <->  E. y ( y  =  (/)  /\  y  e.  x ) )
10 df-clel 2252 . . . . . . . . . . 11  |-  ( (/)  e.  x  <->  E. y ( y  =  (/)  /\  y  e.  x ) )
119, 10bitr4i 245 . . . . . . . . . 10  |-  ( E. y ( y  e.  x  /\  y  =  (/) )  <->  (/)  e.  x )
12 snssi 3719 . . . . . . . . . 10  |-  ( (/)  e.  x  ->  { (/) } 
C_  x )
1311, 12sylbi 189 . . . . . . . . 9  |-  ( E. y ( y  e.  x  /\  y  =  (/) )  ->  { (/) } 
C_  x )
148, 13syl6 31 . . . . . . . 8  |-  ( A. y ( y  e.  x  ->  y  =  (/) )  ->  ( -.  x  =  (/)  ->  { (/) } 
C_  x ) )
155, 14sylbi 189 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  ( -.  x  =  (/)  ->  { (/) }  C_  x
) )
1615anc2li 542 . . . . . 6  |-  ( x 
C_  { (/) }  ->  ( -.  x  =  (/)  ->  ( x  C_  { (/) }  /\  { (/) }  C_  x ) ) )
17 eqss 3155 . . . . . 6  |-  ( x  =  { (/) }  <->  ( x  C_ 
{ (/) }  /\  { (/)
}  C_  x )
)
1816, 17syl6ibr 220 . . . . 5  |-  ( x 
C_  { (/) }  ->  ( -.  x  =  (/)  ->  x  =  { (/) } ) )
1918orrd 369 . . . 4  |-  ( x 
C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) )
20 0ss 3444 . . . . . 6  |-  (/)  C_  { (/) }
21 sseq1 3160 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  { (/) }  <->  (/)  C_  { (/) } ) )
2220, 21mpbiri 226 . . . . 5  |-  ( x  =  (/)  ->  x  C_  {
(/) } )
23 eqimss 3191 . . . . 5  |-  ( x  =  { (/) }  ->  x 
C_  { (/) } )
2422, 23jaoi 370 . . . 4  |-  ( ( x  =  (/)  \/  x  =  { (/) } )  ->  x  C_  { (/) } )
2519, 24impbii 182 . . 3  |-  ( x 
C_  { (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
2625abbii 2368 . 2  |-  { x  |  x  C_  { (/) } }  =  { x  |  ( x  =  (/)  \/  x  =  { (/)
} ) }
27 df-pw 3587 . 2  |-  ~P { (/)
}  =  { x  |  x  C_  { (/) } }
28 dfpr2 3616 . 2  |-  { (/) ,  { (/) } }  =  { x  |  (
x  =  (/)  \/  x  =  { (/) } ) }
2926, 27, 283eqtr4i 2286 1  |-  ~P { (/)
}  =  { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2242    C_ wss 3113   (/)c0 3416   ~Pcpw 3585   {csn 3600   {cpr 3601
This theorem is referenced by:  pp0ex  4157  pwcda1  7774  canthp1lem1  8228  rankeq1o  24162  ssoninhaus  24248
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-pw 3587  df-sn 3606  df-pr 3607
  Copyright terms: Public domain W3C validator