MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscafval Unicode version

Theorem pwsvscafval 13395
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y  |-  Y  =  ( R  ^s  I )
pwsvscaval.b  |-  B  =  ( Base `  Y
)
pwsvscaval.s  |-  .x.  =  ( .s `  R )
pwsvscaval.t  |-  .xb  =  ( .s `  Y )
pwsvscaval.f  |-  F  =  (Scalar `  R )
pwsvscaval.k  |-  K  =  ( Base `  F
)
pwsvscaval.r  |-  ( ph  ->  R  e.  V )
pwsvscaval.i  |-  ( ph  ->  I  e.  W )
pwsvscaval.a  |-  ( ph  ->  A  e.  K )
pwsvscaval.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
pwsvscafval  |-  ( ph  ->  ( A  .xb  X
)  =  ( ( I  X.  { A } )  o F 
.x.  X ) )

Proof of Theorem pwsvscafval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwsvscaval.t . . . 4  |-  .xb  =  ( .s `  Y )
2 pwsvscaval.r . . . . . 6  |-  ( ph  ->  R  e.  V )
3 pwsvscaval.i . . . . . 6  |-  ( ph  ->  I  e.  W )
4 pwsvscaval.y . . . . . . 7  |-  Y  =  ( R  ^s  I )
5 pwsvscaval.f . . . . . . 7  |-  F  =  (Scalar `  R )
64, 5pwsval 13387 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( F
X_s ( I  X.  { R } ) ) )
72, 3, 6syl2anc 642 . . . . 5  |-  ( ph  ->  Y  =  ( F
X_s ( I  X.  { R } ) ) )
87fveq2d 5531 . . . 4  |-  ( ph  ->  ( .s `  Y
)  =  ( .s
`  ( F X_s (
I  X.  { R } ) ) ) )
91, 8syl5eq 2329 . . 3  |-  ( ph  -> 
.xb  =  ( .s
`  ( F X_s (
I  X.  { R } ) ) ) )
109oveqd 5877 . 2  |-  ( ph  ->  ( A  .xb  X
)  =  ( A ( .s `  ( F X_s ( I  X.  { R } ) ) ) X ) )
11 eqid 2285 . . 3  |-  ( F
X_s ( I  X.  { R } ) )  =  ( F X_s ( I  X.  { R } ) )
12 eqid 2285 . . 3  |-  ( Base `  ( F X_s ( I  X.  { R } ) ) )  =  ( Base `  ( F X_s ( I  X.  { R } ) ) )
13 eqid 2285 . . 3  |-  ( .s
`  ( F X_s (
I  X.  { R } ) ) )  =  ( .s `  ( F X_s ( I  X.  { R } ) ) )
14 pwsvscaval.k . . 3  |-  K  =  ( Base `  F
)
15 fvex 5541 . . . . 5  |-  (Scalar `  R )  e.  _V
165, 15eqeltri 2355 . . . 4  |-  F  e. 
_V
1716a1i 10 . . 3  |-  ( ph  ->  F  e.  _V )
18 fnconstg 5431 . . . 4  |-  ( R  e.  V  ->  (
I  X.  { R } )  Fn  I
)
192, 18syl 15 . . 3  |-  ( ph  ->  ( I  X.  { R } )  Fn  I
)
20 pwsvscaval.a . . 3  |-  ( ph  ->  A  e.  K )
21 pwsvscaval.x . . . 4  |-  ( ph  ->  X  e.  B )
22 pwsvscaval.b . . . . 5  |-  B  =  ( Base `  Y
)
237fveq2d 5531 . . . . 5  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( F X_s ( I  X.  { R } ) ) ) )
2422, 23syl5eq 2329 . . . 4  |-  ( ph  ->  B  =  ( Base `  ( F X_s ( I  X.  { R } ) ) ) )
2521, 24eleqtrd 2361 . . 3  |-  ( ph  ->  X  e.  ( Base `  ( F X_s ( I  X.  { R } ) ) ) )
2611, 12, 13, 14, 17, 3, 19, 20, 25prdsvscaval 13380 . 2  |-  ( ph  ->  ( A ( .s
`  ( F X_s (
I  X.  { R } ) ) ) X )  =  ( x  e.  I  |->  ( A ( .s `  ( ( I  X.  { R } ) `  x ) ) ( X `  x ) ) ) )
27 fvconst2g 5729 . . . . . . . 8  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
282, 27sylan 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
2928fveq2d 5531 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( .s `  ( ( I  X.  { R }
) `  x )
)  =  ( .s
`  R ) )
30 pwsvscaval.s . . . . . 6  |-  .x.  =  ( .s `  R )
3129, 30syl6eqr 2335 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( .s `  ( ( I  X.  { R }
) `  x )
)  =  .x.  )
3231oveqd 5877 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( A ( .s `  ( ( I  X.  { R } ) `  x ) ) ( X `  x ) )  =  ( A 
.x.  ( X `  x ) ) )
3332mpteq2dva 4108 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( A ( .s
`  ( ( I  X.  { R }
) `  x )
) ( X `  x ) ) )  =  ( x  e.  I  |->  ( A  .x.  ( X `  x ) ) ) )
3420adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  K )
35 fvex 5541 . . . . 5  |-  ( X `
 x )  e. 
_V
3635a1i 10 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( X `  x )  e.  _V )
37 fconstmpt 4734 . . . . 5  |-  ( I  X.  { A }
)  =  ( x  e.  I  |->  A )
3837a1i 10 . . . 4  |-  ( ph  ->  ( I  X.  { A } )  =  ( x  e.  I  |->  A ) )
39 eqid 2285 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
404, 39, 22, 2, 3, 21pwselbas 13390 . . . . 5  |-  ( ph  ->  X : I --> ( Base `  R ) )
4140feqmptd 5577 . . . 4  |-  ( ph  ->  X  =  ( x  e.  I  |->  ( X `
 x ) ) )
423, 34, 36, 38, 41offval2 6097 . . 3  |-  ( ph  ->  ( ( I  X.  { A } )  o F  .x.  X )  =  ( x  e.  I  |->  ( A  .x.  ( X `  x ) ) ) )
4333, 42eqtr4d 2320 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( A ( .s
`  ( ( I  X.  { R }
) `  x )
) ( X `  x ) ) )  =  ( ( I  X.  { A }
)  o F  .x.  X ) )
4410, 26, 433eqtrd 2321 1  |-  ( ph  ->  ( A  .xb  X
)  =  ( ( I  X.  { A } )  o F 
.x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790   {csn 3642    e. cmpt 4079    X. cxp 4689    Fn wfn 5252   ` cfv 5257  (class class class)co 5860    o Fcof 6078   Basecbs 13150  Scalarcsca 13213   .scvsca 13214   X_scprds 13348    ^s cpws 13349
This theorem is referenced by:  pwsvscaval  13396  pwsdiaglmhm  15816  pwssplit3  27201  frlmvscafval  27241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-fz 10785  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-plusg 13223  df-mulr 13224  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-prds 13350  df-pws 13352
  Copyright terms: Public domain W3C validator