MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwun Unicode version

Theorem pwun 4304
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwun  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ~P ( A  u.  B )  =  ( ~P A  u.  ~P B ) )

Proof of Theorem pwun
StepHypRef Expression
1 pwunss 4300 . . 3  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
21biantru 491 . 2  |-  ( ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
3 pwssun 4301 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B ) )
4 eqss 3196 . 2  |-  ( ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
52, 3, 43bitr4i 268 1  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ~P ( A  u.  B )  =  ( ~P A  u.  ~P B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1625    u. cun 3152    C_ wss 3154   ~Pcpw 3627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-v 2792  df-un 3159  df-in 3161  df-ss 3168  df-pw 3629  df-sn 3648  df-pr 3649
  Copyright terms: Public domain W3C validator