MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwunss Unicode version

Theorem pwunss 4298
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwunss  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )

Proof of Theorem pwunss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssun 3354 . . 3  |-  ( ( x  C_  A  \/  x  C_  B )  ->  x  C_  ( A  u.  B ) )
2 elun 3316 . . . 4  |-  ( x  e.  ( ~P A  u.  ~P B )  <->  ( x  e.  ~P A  \/  x  e.  ~P B ) )
3 vex 2791 . . . . . 6  |-  x  e. 
_V
43elpw 3631 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3631 . . . . 5  |-  ( x  e.  ~P B  <->  x  C_  B
)
64, 5orbi12i 507 . . . 4  |-  ( ( x  e.  ~P A  \/  x  e.  ~P B )  <->  ( x  C_  A  \/  x  C_  B ) )
72, 6bitri 240 . . 3  |-  ( x  e.  ( ~P A  u.  ~P B )  <->  ( x  C_  A  \/  x  C_  B ) )
83elpw 3631 . . 3  |-  ( x  e.  ~P ( A  u.  B )  <->  x  C_  ( A  u.  B )
)
91, 7, 83imtr4i 257 . 2  |-  ( x  e.  ( ~P A  u.  ~P B )  ->  x  e.  ~P ( A  u.  B )
)
109ssriv 3184 1  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 357    e. wcel 1684    u. cun 3150    C_ wss 3152   ~Pcpw 3625
This theorem is referenced by:  pwundif  4300  pwun  4302  pwundif2  23186
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-in 3159  df-ss 3166  df-pw 3627
  Copyright terms: Public domain W3C validator