MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwv Unicode version

Theorem pwv 3826
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv  |-  ~P _V  =  _V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3198 . . . 4  |-  x  C_  _V
2 vex 2791 . . . . 5  |-  x  e. 
_V
32elpw 3631 . . . 4  |-  ( x  e.  ~P _V  <->  x  C_  _V )
41, 3mpbir 200 . . 3  |-  x  e. 
~P _V
54, 22th 230 . 2  |-  ( x  e.  ~P _V  <->  x  e.  _V )
65eqriv 2280 1  |-  ~P _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625
This theorem is referenced by:  univ  4565  ncanth  6295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-ss 3166  df-pw 3627
  Copyright terms: Public domain W3C validator