MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwv Unicode version

Theorem pwv 3958
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv  |-  ~P _V  =  _V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3313 . . . 4  |-  x  C_  _V
2 vex 2904 . . . . 5  |-  x  e. 
_V
32elpw 3750 . . . 4  |-  ( x  e.  ~P _V  <->  x  C_  _V )
41, 3mpbir 201 . . 3  |-  x  e. 
~P _V
54, 22th 231 . 2  |-  ( x  e.  ~P _V  <->  x  e.  _V )
65eqriv 2386 1  |-  ~P _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   _Vcvv 2901    C_ wss 3265   ~Pcpw 3744
This theorem is referenced by:  univ  4696  ncanth  6478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-v 2903  df-in 3272  df-ss 3279  df-pw 3746
  Copyright terms: Public domain W3C validator