Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythi Structured version   Unicode version

Theorem pythi 22351
 Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space . The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
pyth.1
pyth.2
pyth.6 CV
pyth.7
pythi.u
pythi.a
pythi.b
Assertion
Ref Expression
pythi

Proof of Theorem pythi
StepHypRef Expression
1 pyth.1 . . . 4
2 pyth.2 . . . 4
3 pyth.7 . . . 4
4 pythi.u . . . 4
5 pythi.a . . . 4
6 pythi.b . . . 4
71, 2, 3, 4, 5, 6, 5, 6ip2dii 22345 . . 3
8 id 20 . . . . . . 7
94phnvi 22317 . . . . . . . . 9
101, 3diporthcom 22215 . . . . . . . . 9
119, 5, 6, 10mp3an 1279 . . . . . . . 8
1211biimpi 187 . . . . . . 7
138, 12oveq12d 6099 . . . . . 6
14 00id 9241 . . . . . 6
1513, 14syl6eq 2484 . . . . 5
1615oveq2d 6097 . . . 4
171, 3dipcl 22211 . . . . . . 7
189, 5, 5, 17mp3an 1279 . . . . . 6
191, 3dipcl 22211 . . . . . . 7
209, 6, 6, 19mp3an 1279 . . . . . 6
2118, 20addcli 9094 . . . . 5
2221addid1i 9253 . . . 4
2316, 22syl6eq 2484 . . 3
247, 23syl5eq 2480 . 2
251, 2nvgcl 22099 . . . 4
269, 5, 6, 25mp3an 1279 . . 3
27 pyth.6 . . . 4 CV
281, 27, 3ipidsq 22209 . . 3
299, 26, 28mp2an 654 . 2
301, 27, 3ipidsq 22209 . . . 4
319, 5, 30mp2an 654 . . 3
321, 27, 3ipidsq 22209 . . . 4
339, 6, 32mp2an 654 . . 3
3431, 33oveq12i 6093 . 2
3524, 29, 343eqtr3g 2491 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  cfv 5454  (class class class)co 6081  cc 8988  cc0 8990   caddc 8993  c2 10049  cexp 11382  cnv 22063  cpv 22064  cba 22065  CVcnmcv 22069  cdip 22196  ccphlo 22313 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-grpo 21779  df-gid 21780  df-ginv 21781  df-ablo 21870  df-vc 22025  df-nv 22071  df-va 22074  df-ba 22075  df-sm 22076  df-0v 22077  df-nmcv 22079  df-dip 22197  df-ph 22314
 Copyright terms: Public domain W3C validator