MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Unicode version

Theorem qabvle 21187
Description: By using induction on  N, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
Assertion
Ref Expression
qabvle  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )

Proof of Theorem qabvle
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5669 . . . . 5  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
2 id 20 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
31, 2breq12d 4167 . . . 4  |-  ( k  =  0  ->  (
( F `  k
)  <_  k  <->  ( F `  0 )  <_ 
0 ) )
43imbi2d 308 . . 3  |-  ( k  =  0  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  0
)  <_  0 ) ) )
5 fveq2 5669 . . . . 5  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
6 id 20 . . . . 5  |-  ( k  =  n  ->  k  =  n )
75, 6breq12d 4167 . . . 4  |-  ( k  =  n  ->  (
( F `  k
)  <_  k  <->  ( F `  n )  <_  n
) )
87imbi2d 308 . . 3  |-  ( k  =  n  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  n
)  <_  n )
) )
9 fveq2 5669 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
10 id 20 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  k  =  ( n  + 
1 ) )
119, 10breq12d 4167 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  <_  k  <->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) ) )
1211imbi2d 308 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
13 fveq2 5669 . . . . 5  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
14 id 20 . . . . 5  |-  ( k  =  N  ->  k  =  N )
1513, 14breq12d 4167 . . . 4  |-  ( k  =  N  ->  (
( F `  k
)  <_  k  <->  ( F `  N )  <_  N
) )
1615imbi2d 308 . . 3  |-  ( k  =  N  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  N
)  <_  N )
) )
17 qabsabv.a . . . . 5  |-  A  =  (AbsVal `  Q )
18 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
1918qrng0 21183 . . . . 5  |-  0  =  ( 0g `  Q )
2017, 19abv0 15847 . . . 4  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
21 0le0 10014 . . . 4  |-  0  <_  0
2220, 21syl6eqbr 4191 . . 3  |-  ( F  e.  A  ->  ( F `  0 )  <_  0 )
23 nn0p1nn 10192 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
2423ad2antrl 709 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  NN )
25 nnq 10520 . . . . . . . . 9  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  e.  QQ )
2624, 25syl 16 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  QQ )
2718qrngbas 21181 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
2817, 27abvcl 15840 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  +  1
)  e.  QQ )  ->  ( F `  ( n  +  1
) )  e.  RR )
2926, 28syldan 457 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  e.  RR )
30 nn0z 10237 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
3130ad2antrl 709 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  ZZ )
32 zq 10513 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  QQ )
3331, 32syl 16 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  QQ )
3417, 27abvcl 15840 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
3533, 34syldan 457 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  e.  RR )
36 peano2re 9172 . . . . . . . 8  |-  ( ( F `  n )  e.  RR  ->  (
( F `  n
)  +  1 )  e.  RR )
3735, 36syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  e.  RR )
3831zred 10308 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  RR )
39 peano2re 9172 . . . . . . . 8  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
4038, 39syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  RR )
41 simpl 444 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  F  e.  A )
42 1z 10244 . . . . . . . . . 10  |-  1  e.  ZZ
43 zq 10513 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
4442, 43mp1i 12 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  QQ )
45 qex 10519 . . . . . . . . . . 11  |-  QQ  e.  _V
46 cnfldadd 16632 . . . . . . . . . . . 12  |-  +  =  ( +g  ` fld )
4718, 46ressplusg 13499 . . . . . . . . . . 11  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
4845, 47ax-mp 8 . . . . . . . . . 10  |-  +  =  ( +g  `  Q )
4917, 27, 48abvtri 15846 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ  /\  1  e.  QQ )  ->  ( F `  ( n  +  1 ) )  <_  ( ( F `
 n )  +  ( F `  1
) ) )
5041, 33, 44, 49syl3anc 1184 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  ( F `
 1 ) ) )
51 ax-1ne0 8993 . . . . . . . . . . 11  |-  1  =/=  0
5218qrng1 21184 . . . . . . . . . . . 12  |-  1  =  ( 1r `  Q )
5317, 52, 19abv1z 15848 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
5451, 53mpan2 653 . . . . . . . . . 10  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
5554adantr 452 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  1 )  =  1 )
5655oveq2d 6037 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  ( F ` 
1 ) )  =  ( ( F `  n )  +  1 ) )
5750, 56breqtrd 4178 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  1 ) )
58 1re 9024 . . . . . . . . 9  |-  1  e.  RR
5958a1i 11 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  RR )
60 simprr 734 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  <_  n
)
6135, 38, 59, 60leadd1dd 9573 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  <_ 
( n  +  1 ) )
6229, 37, 40, 57, 61letrd 9160 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) )
6362expr 599 . . . . 5  |-  ( ( F  e.  A  /\  n  e.  NN0 )  -> 
( ( F `  n )  <_  n  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) )
6463expcom 425 . . . 4  |-  ( n  e.  NN0  ->  ( F  e.  A  ->  (
( F `  n
)  <_  n  ->  ( F `  ( n  +  1 ) )  <_  ( n  + 
1 ) ) ) )
6564a2d 24 . . 3  |-  ( n  e.  NN0  ->  ( ( F  e.  A  -> 
( F `  n
)  <_  n )  ->  ( F  e.  A  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
664, 8, 12, 16, 22, 65nn0ind 10299 . 2  |-  ( N  e.  NN0  ->  ( F  e.  A  ->  ( F `  N )  <_  N ) )
6766impcom 420 1  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   _Vcvv 2900   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    <_ cle 9055   NNcn 9933   NN0cn0 10154   ZZcz 10215   QQcq 10507   ↾s cress 13398   +g cplusg 13457  AbsValcabv 15832  ℂfldccnfld 16627
This theorem is referenced by:  ostth2lem2  21196  ostth2  21199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-tpos 6416  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-ico 10855  df-fz 10977  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-0g 13655  df-mnd 14618  df-grp 14740  df-minusg 14741  df-subg 14869  df-cmn 15342  df-mgp 15577  df-rng 15591  df-cring 15592  df-ur 15593  df-oppr 15656  df-dvdsr 15674  df-unit 15675  df-invr 15705  df-dvr 15716  df-drng 15765  df-subrg 15794  df-abv 15833  df-cnfld 16628
  Copyright terms: Public domain W3C validator