MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Unicode version

Theorem qabvle 21319
Description: By using induction on  N, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
Assertion
Ref Expression
qabvle  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )

Proof of Theorem qabvle
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5728 . . . . 5  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
2 id 20 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
31, 2breq12d 4225 . . . 4  |-  ( k  =  0  ->  (
( F `  k
)  <_  k  <->  ( F `  0 )  <_ 
0 ) )
43imbi2d 308 . . 3  |-  ( k  =  0  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  0
)  <_  0 ) ) )
5 fveq2 5728 . . . . 5  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
6 id 20 . . . . 5  |-  ( k  =  n  ->  k  =  n )
75, 6breq12d 4225 . . . 4  |-  ( k  =  n  ->  (
( F `  k
)  <_  k  <->  ( F `  n )  <_  n
) )
87imbi2d 308 . . 3  |-  ( k  =  n  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  n
)  <_  n )
) )
9 fveq2 5728 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
10 id 20 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  k  =  ( n  + 
1 ) )
119, 10breq12d 4225 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  <_  k  <->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) ) )
1211imbi2d 308 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
13 fveq2 5728 . . . . 5  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
14 id 20 . . . . 5  |-  ( k  =  N  ->  k  =  N )
1513, 14breq12d 4225 . . . 4  |-  ( k  =  N  ->  (
( F `  k
)  <_  k  <->  ( F `  N )  <_  N
) )
1615imbi2d 308 . . 3  |-  ( k  =  N  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  N
)  <_  N )
) )
17 qabsabv.a . . . . 5  |-  A  =  (AbsVal `  Q )
18 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
1918qrng0 21315 . . . . 5  |-  0  =  ( 0g `  Q )
2017, 19abv0 15919 . . . 4  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
21 0le0 10081 . . . 4  |-  0  <_  0
2220, 21syl6eqbr 4249 . . 3  |-  ( F  e.  A  ->  ( F `  0 )  <_  0 )
23 nn0p1nn 10259 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
2423ad2antrl 709 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  NN )
25 nnq 10587 . . . . . . . . 9  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  e.  QQ )
2624, 25syl 16 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  QQ )
2718qrngbas 21313 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
2817, 27abvcl 15912 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  +  1
)  e.  QQ )  ->  ( F `  ( n  +  1
) )  e.  RR )
2926, 28syldan 457 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  e.  RR )
30 nn0z 10304 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
3130ad2antrl 709 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  ZZ )
32 zq 10580 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  QQ )
3331, 32syl 16 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  QQ )
3417, 27abvcl 15912 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
3533, 34syldan 457 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  e.  RR )
36 peano2re 9239 . . . . . . . 8  |-  ( ( F `  n )  e.  RR  ->  (
( F `  n
)  +  1 )  e.  RR )
3735, 36syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  e.  RR )
3831zred 10375 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  RR )
39 peano2re 9239 . . . . . . . 8  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
4038, 39syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  RR )
41 simpl 444 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  F  e.  A )
42 1z 10311 . . . . . . . . . 10  |-  1  e.  ZZ
43 zq 10580 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
4442, 43mp1i 12 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  QQ )
45 qex 10586 . . . . . . . . . . 11  |-  QQ  e.  _V
46 cnfldadd 16708 . . . . . . . . . . . 12  |-  +  =  ( +g  ` fld )
4718, 46ressplusg 13571 . . . . . . . . . . 11  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
4845, 47ax-mp 8 . . . . . . . . . 10  |-  +  =  ( +g  `  Q )
4917, 27, 48abvtri 15918 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ  /\  1  e.  QQ )  ->  ( F `  ( n  +  1 ) )  <_  ( ( F `
 n )  +  ( F `  1
) ) )
5041, 33, 44, 49syl3anc 1184 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  ( F `
 1 ) ) )
51 ax-1ne0 9059 . . . . . . . . . . 11  |-  1  =/=  0
5218qrng1 21316 . . . . . . . . . . . 12  |-  1  =  ( 1r `  Q )
5317, 52, 19abv1z 15920 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
5451, 53mpan2 653 . . . . . . . . . 10  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
5554adantr 452 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  1 )  =  1 )
5655oveq2d 6097 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  ( F ` 
1 ) )  =  ( ( F `  n )  +  1 ) )
5750, 56breqtrd 4236 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  1 ) )
58 1re 9090 . . . . . . . . 9  |-  1  e.  RR
5958a1i 11 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  RR )
60 simprr 734 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  <_  n
)
6135, 38, 59, 60leadd1dd 9640 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  <_ 
( n  +  1 ) )
6229, 37, 40, 57, 61letrd 9227 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) )
6362expr 599 . . . . 5  |-  ( ( F  e.  A  /\  n  e.  NN0 )  -> 
( ( F `  n )  <_  n  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) )
6463expcom 425 . . . 4  |-  ( n  e.  NN0  ->  ( F  e.  A  ->  (
( F `  n
)  <_  n  ->  ( F `  ( n  +  1 ) )  <_  ( n  + 
1 ) ) ) )
6564a2d 24 . . 3  |-  ( n  e.  NN0  ->  ( ( F  e.  A  -> 
( F `  n
)  <_  n )  ->  ( F  e.  A  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
664, 8, 12, 16, 22, 65nn0ind 10366 . 2  |-  ( N  e.  NN0  ->  ( F  e.  A  ->  ( F `  N )  <_  N ) )
6766impcom 420 1  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    <_ cle 9121   NNcn 10000   NN0cn0 10221   ZZcz 10282   QQcq 10574   ↾s cress 13470   +g cplusg 13529  AbsValcabv 15904  ℂfldccnfld 16703
This theorem is referenced by:  ostth2lem2  21328  ostth2  21331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-ico 10922  df-fz 11044  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813  df-subg 14941  df-cmn 15414  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-drng 15837  df-subrg 15866  df-abv 15905  df-cnfld 16704
  Copyright terms: Public domain W3C validator