MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Unicode version

Theorem qbtwnre 10521
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B
Dummy variables  y 
z are mutually distinct and distinct from all other variables.

Proof of Theorem qbtwnre
StepHypRef Expression
1 posdif 9263 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
2 resubcl 9107 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 nnrecl 9959 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) )
42, 3sylan 459 . . . . . 6  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  0  <  ( B  -  A )
)  ->  E. y  e.  NN  ( 1  / 
y )  <  ( B  -  A )
)
54ex 425 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
65ancoms 441 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
71, 6sylbid 208 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
8 nnre 9749 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  RR )
98adantl 454 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  y  e.  RR )
10 simplr 733 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  B  e.  RR )
119, 10remulcld 8859 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( y  x.  B )  e.  RR )
12 peano2rem 9109 . . . . . . 7  |-  ( ( y  x.  B )  e.  RR  ->  (
( y  x.  B
)  -  1 )  e.  RR )
1311, 12syl 17 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( ( y  x.  B )  - 
1 )  e.  RR )
14 zbtwnre 10310 . . . . . 6  |-  ( ( ( y  x.  B
)  -  1 )  e.  RR  ->  E! z  e.  ZZ  (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) ) )
15 reurex 2756 . . . . . 6  |-  ( E! z  e.  ZZ  (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  E. z  e.  ZZ  ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) ) )
1613, 14, 153syl 20 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  E. z  e.  ZZ  ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) ) )
17 znq 10316 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  y  e.  NN )  ->  ( z  /  y
)  e.  QQ )
1817ancoms 441 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( z  /  y
)  e.  QQ )
1918adantl 454 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  /  y
)  e.  QQ )
20 an32 775 . . . . . . . . . 10  |-  ( ( ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) )  /\  ( 1  / 
y )  <  ( B  -  A )
)  <->  ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) )  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) ) )
218ad2antrl 710 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
y  e.  RR )
22 simpll 732 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  A  e.  RR )
2321, 22remulcld 8859 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  A
)  e.  RR )
2413adantrr 699 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  B )  -  1 )  e.  RR )
25 zre 10024 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
2625ad2antll 711 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
z  e.  RR )
27 ltletr 8909 . . . . . . . . . . . . 13  |-  ( ( ( y  x.  A
)  e.  RR  /\  ( ( y  x.  B )  -  1 )  e.  RR  /\  z  e.  RR )  ->  ( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  ->  (
y  x.  A )  <  z ) )
2823, 24, 26, 27syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  ->  (
y  x.  A )  <  z ) )
2921recnd 8857 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
y  e.  CC )
30 simplr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  B  e.  RR )
3130recnd 8857 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  B  e.  CC )
3222recnd 8857 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  A  e.  CC )
3329, 31, 32subdid 9231 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  ( B  -  A )
)  =  ( ( y  x.  B )  -  ( y  x.  A ) ) )
3433breq2d 4037 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( 1  <  (
y  x.  ( B  -  A ) )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
35 1re 8833 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
3635a1i 12 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
1  e.  RR )
3730, 22resubcld 9207 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( B  -  A
)  e.  RR )
38 nngt0 9771 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  0  <  y )
3938ad2antrl 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
0  <  y )
40 ltdivmul 9624 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( B  -  A
)  e.  RR  /\  ( y  e.  RR  /\  0  <  y ) )  ->  ( (
1  /  y )  <  ( B  -  A )  <->  1  <  ( y  x.  ( B  -  A ) ) ) )
4136, 37, 21, 39, 40syl112anc 1188 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( 1  / 
y )  <  ( B  -  A )  <->  1  <  ( y  x.  ( B  -  A
) ) ) )
4211adantrr 699 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  B
)  e.  RR )
43 ltsub13 9251 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  x.  A
)  e.  RR  /\  ( y  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
4423, 42, 36, 43syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
4534, 41, 443bitr4rd 279 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <-> 
( 1  /  y
)  <  ( B  -  A ) ) )
4645anbi1d 687 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  <->  ( (
1  /  y )  <  ( B  -  A )  /\  (
( y  x.  B
)  -  1 )  <_  z ) ) )
47 ancom 439 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  y
)  <  ( B  -  A )  /\  (
( y  x.  B
)  -  1 )  <_  z )  <->  ( (
( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) ) )
4846, 47syl6bb 254 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  <->  ( (
( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) ) ) )
49 ltmuldiv2 9623 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  z  e.  RR  /\  (
y  e.  RR  /\  0  <  y ) )  ->  ( ( y  x.  A )  < 
z  <->  A  <  ( z  /  y ) ) )
5022, 26, 21, 39, 49syl112anc 1188 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  z  <->  A  <  ( z  / 
y ) ) )
5128, 48, 503imtr3d 260 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  ( 1  /  y )  < 
( B  -  A
) )  ->  A  <  ( z  /  y
) ) )
5242recnd 8857 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  B
)  e.  CC )
53 ax-1cn 8791 . . . . . . . . . . . . . . 15  |-  1  e.  CC
54 npcan 9056 . . . . . . . . . . . . . . 15  |-  ( ( ( y  x.  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( y  x.  B )  - 
1 )  +  1 )  =  ( y  x.  B ) )
5552, 53, 54sylancl 645 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  B )  - 
1 )  +  1 )  =  ( y  x.  B ) )
5655breq2d 4037 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  <-> 
z  <  ( y  x.  B ) ) )
57 ltdivmul 9624 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  B  e.  RR  /\  (
y  e.  RR  /\  0  <  y ) )  ->  ( ( z  /  y )  < 
B  <->  z  <  (
y  x.  B ) ) )
5826, 30, 21, 39, 57syl112anc 1188 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( z  / 
y )  <  B  <->  z  <  ( y  x.  B ) ) )
5956, 58bitr4d 249 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  <-> 
( z  /  y
)  <  B )
)
6059biimpd 200 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  ->  ( z  / 
y )  <  B
) )
6151, 60anim12d 548 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) )  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  -> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
6220, 61syl5bi 210 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  - 
1 )  +  1 ) )  /\  (
1  /  y )  <  ( B  -  A ) )  -> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
63 breq2 4029 . . . . . . . . . . 11  |-  ( x  =  ( z  / 
y )  ->  ( A  <  x  <->  A  <  ( z  /  y ) ) )
64 breq1 4028 . . . . . . . . . . 11  |-  ( x  =  ( z  / 
y )  ->  (
x  <  B  <->  ( z  /  y )  < 
B ) )
6563, 64anbi12d 693 . . . . . . . . . 10  |-  ( x  =  ( z  / 
y )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
6665rspcev 2886 . . . . . . . . 9  |-  ( ( ( z  /  y
)  e.  QQ  /\  ( A  <  ( z  /  y )  /\  ( z  /  y
)  <  B )
)  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
6719, 62, 66ee12an 1355 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  - 
1 )  +  1 ) )  /\  (
1  /  y )  <  ( B  -  A ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
6867exp3a 427 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  ( (
1  /  y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) ) )
6968expr 600 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( z  e.  ZZ  ->  ( (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  -> 
( ( 1  / 
y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) ) ) )
7069rexlimdv 2668 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( E. z  e.  ZZ  ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  ( (
1  /  y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) ) )
7116, 70mpd 16 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( ( 1  /  y )  < 
( B  -  A
)  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
7271rexlimdva 2669 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. y  e.  NN  ( 1  / 
y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
737, 72syld 42 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
74733impia 1150 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   E.wrex 2546   E!wreu 2547   class class class wbr 4025  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    < clt 8863    <_ cle 8864    - cmin 9033    / cdiv 9419   NNcn 9742   ZZcz 10020   QQcq 10312
This theorem is referenced by:  qbtwnxr  10522  qsqueeze  10523  nmoleub2lem3  18591  mbfaddlem  19010  rpnnen3lem  26524
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-n0 9962  df-z 10021  df-uz 10227  df-q 10313
  Copyright terms: Public domain W3C validator