HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr2i Unicode version

Theorem qlaxr2i 22206
Description: One of the conditions showing  CH is an ortholattice. (This corresponds to axiom "ax-r2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr2.1  |-  A  e. 
CH
qlaxr2.2  |-  B  e. 
CH
qlaxr2.3  |-  C  e. 
CH
qlaxr2.4  |-  A  =  B
qlaxr2.5  |-  B  =  C
Assertion
Ref Expression
qlaxr2i  |-  A  =  C

Proof of Theorem qlaxr2i
StepHypRef Expression
1 qlaxr2.4 . 2  |-  A  =  B
2 qlaxr2.5 . 2  |-  B  =  C
31, 2eqtri 2306 1  |-  A  =  C
Colors of variables: wff set class
Syntax hints:    = wceq 1625    e. wcel 1687   CHcch 21503
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-11 1718  ax-ext 2267
This theorem depends on definitions:  df-bi 179  df-cleq 2279
  Copyright terms: Public domain W3C validator