HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr5i Unicode version

Theorem qlaxr5i 22208
Description: One of the conditions showing  CH is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr5.1  |-  A  e. 
CH
qlaxr5.2  |-  B  e. 
CH
qlaxr5.3  |-  C  e. 
CH
qlaxr5.4  |-  A  =  B
Assertion
Ref Expression
qlaxr5i  |-  ( A  vH  C )  =  ( B  vH  C
)

Proof of Theorem qlaxr5i
StepHypRef Expression
1 qlaxr5.4 . 2  |-  A  =  B
21oveq1i 5831 1  |-  ( A  vH  C )  =  ( B  vH  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1625    e. wcel 1687  (class class class)co 5821   CHcch 21503    vH chj 21507
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-rex 2552  df-rab 2555  df-v 2793  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-nul 3459  df-if 3569  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3831  df-br 4027  df-opab 4081  df-xp 4696  df-cnv 4698  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fv 5231  df-ov 5824
  Copyright terms: Public domain W3C validator