MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnnen Unicode version

Theorem qnnen 12492
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set  ( ZZ  X.  NN ) is numerable. Exercise 2 of [Enderton] p. 133. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
qnnen  |-  QQ  ~~  NN

Proof of Theorem qnnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 7347 . . . . . . 7  |-  om  e.  On
2 nnenom 11042 . . . . . . . 8  |-  NN  ~~  om
32ensymi 6911 . . . . . . 7  |-  om  ~~  NN
4 isnumi 7579 . . . . . . 7  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
51, 3, 4mp2an 653 . . . . . 6  |-  NN  e.  dom  card
6 znnen 12491 . . . . . . 7  |-  ZZ  ~~  NN
7 ennum 7580 . . . . . . 7  |-  ( ZZ 
~~  NN  ->  ( ZZ  e.  dom  card  <->  NN  e.  dom  card ) )
86, 7ax-mp 8 . . . . . 6  |-  ( ZZ  e.  dom  card  <->  NN  e.  dom  card )
95, 8mpbir 200 . . . . 5  |-  ZZ  e.  dom  card
10 xpnum 7584 . . . . 5  |-  ( ( ZZ  e.  dom  card  /\  NN  e.  dom  card )  ->  ( ZZ  X.  NN )  e.  dom  card )
119, 5, 10mp2an 653 . . . 4  |-  ( ZZ 
X.  NN )  e. 
dom  card
12 eqid 2283 . . . . . 6  |-  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  / 
y ) )
13 ovex 5883 . . . . . 6  |-  ( x  /  y )  e. 
_V
1412, 13fnmpt2i 6193 . . . . 5  |-  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y ) )  Fn  ( ZZ  X.  NN )
1512rnmpt2 5954 . . . . . 6  |-  ran  (
x  e.  ZZ , 
y  e.  NN  |->  ( x  /  y ) )  =  { z  |  E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  /  y ) }
16 elq 10318 . . . . . . 7  |-  ( z  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  /  y ) )
1716abbi2i 2394 . . . . . 6  |-  QQ  =  { z  |  E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  /  y ) }
1815, 17eqtr4i 2306 . . . . 5  |-  ran  (
x  e.  ZZ , 
y  e.  NN  |->  ( x  /  y ) )  =  QQ
19 df-fo 5261 . . . . 5  |-  ( ( x  e.  ZZ , 
y  e.  NN  |->  ( x  /  y ) ) : ( ZZ 
X.  NN ) -onto-> QQ  <->  ( ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y
) )  Fn  ( ZZ  X.  NN )  /\  ran  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y
) )  =  QQ ) )
2014, 18, 19mpbir2an 886 . . . 4  |-  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y ) ) : ( ZZ  X.  NN ) -onto-> QQ
21 fodomnum 7684 . . . 4  |-  ( ( ZZ  X.  NN )  e.  dom  card  ->  ( ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y
) ) : ( ZZ  X.  NN )
-onto-> QQ  ->  QQ  ~<_  ( ZZ 
X.  NN ) ) )
2211, 20, 21mp2 17 . . 3  |-  QQ  ~<_  ( ZZ 
X.  NN )
23 nnex 9752 . . . . . 6  |-  NN  e.  _V
2423enref 6894 . . . . 5  |-  NN  ~~  NN
25 xpen 7024 . . . . 5  |-  ( ( ZZ  ~~  NN  /\  NN  ~~  NN )  -> 
( ZZ  X.  NN )  ~~  ( NN  X.  NN ) )
266, 24, 25mp2an 653 . . . 4  |-  ( ZZ 
X.  NN )  ~~  ( NN  X.  NN )
27 xpnnen 12487 . . . 4  |-  ( NN 
X.  NN )  ~~  NN
2826, 27entri 6915 . . 3  |-  ( ZZ 
X.  NN )  ~~  NN
29 domentr 6920 . . 3  |-  ( ( QQ  ~<_  ( ZZ  X.  NN )  /\  ( ZZ  X.  NN )  ~~  NN )  ->  QQ  ~<_  NN )
3022, 28, 29mp2an 653 . 2  |-  QQ  ~<_  NN
31 qex 10328 . . 3  |-  QQ  e.  _V
32 nnssq 10325 . . 3  |-  NN  C_  QQ
33 ssdomg 6907 . . 3  |-  ( QQ  e.  _V  ->  ( NN  C_  QQ  ->  NN  ~<_  QQ ) )
3431, 32, 33mp2 17 . 2  |-  NN  ~<_  QQ
35 sbth 6981 . 2  |-  ( ( QQ  ~<_  NN  /\  NN  ~<_  QQ )  ->  QQ  ~~  NN )
3630, 34, 35mp2an 653 1  |-  QQ  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023   Oncon0 4392   omcom 4656    X. cxp 4687   dom cdm 4689   ran crn 4690    Fn wfn 5250   -onto->wfo 5253  (class class class)co 5858    e. cmpt2 5860    ~~ cen 6860    ~<_ cdom 6861   cardccrd 7568    / cdiv 9423   NNcn 9746   ZZcz 10024   QQcq 10316
This theorem is referenced by:  rpnnen  12505  resdomq  12522  re2ndc  18307  ovolq  18850  opnmblALT  18958  vitali  18968  mbfimaopnlem  19010  mbfaddlem  19015  irrapx1  26913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-acn 7575  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317
  Copyright terms: Public domain W3C validator