MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnnen Unicode version

Theorem qnnen 12801
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set  ( ZZ  X.  NN ) is numerable. Exercise 2 of [Enderton] p. 133. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
qnnen  |-  QQ  ~~  NN

Proof of Theorem qnnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 7590 . . . . . . 7  |-  om  e.  On
2 nnenom 11307 . . . . . . . 8  |-  NN  ~~  om
32ensymi 7148 . . . . . . 7  |-  om  ~~  NN
4 isnumi 7822 . . . . . . 7  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
51, 3, 4mp2an 654 . . . . . 6  |-  NN  e.  dom  card
6 znnen 12800 . . . . . . 7  |-  ZZ  ~~  NN
7 ennum 7823 . . . . . . 7  |-  ( ZZ 
~~  NN  ->  ( ZZ  e.  dom  card  <->  NN  e.  dom  card ) )
86, 7ax-mp 8 . . . . . 6  |-  ( ZZ  e.  dom  card  <->  NN  e.  dom  card )
95, 8mpbir 201 . . . . 5  |-  ZZ  e.  dom  card
10 xpnum 7827 . . . . 5  |-  ( ( ZZ  e.  dom  card  /\  NN  e.  dom  card )  ->  ( ZZ  X.  NN )  e.  dom  card )
119, 5, 10mp2an 654 . . . 4  |-  ( ZZ 
X.  NN )  e. 
dom  card
12 eqid 2435 . . . . . 6  |-  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y ) )  =  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  / 
y ) )
13 ovex 6097 . . . . . 6  |-  ( x  /  y )  e. 
_V
1412, 13fnmpt2i 6411 . . . . 5  |-  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y ) )  Fn  ( ZZ  X.  NN )
1512rnmpt2 6171 . . . . . 6  |-  ran  (
x  e.  ZZ , 
y  e.  NN  |->  ( x  /  y ) )  =  { z  |  E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  /  y ) }
16 elq 10565 . . . . . . 7  |-  ( z  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  /  y ) )
1716abbi2i 2546 . . . . . 6  |-  QQ  =  { z  |  E. x  e.  ZZ  E. y  e.  NN  z  =  ( x  /  y ) }
1815, 17eqtr4i 2458 . . . . 5  |-  ran  (
x  e.  ZZ , 
y  e.  NN  |->  ( x  /  y ) )  =  QQ
19 df-fo 5451 . . . . 5  |-  ( ( x  e.  ZZ , 
y  e.  NN  |->  ( x  /  y ) ) : ( ZZ 
X.  NN ) -onto-> QQ  <->  ( ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y
) )  Fn  ( ZZ  X.  NN )  /\  ran  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y
) )  =  QQ ) )
2014, 18, 19mpbir2an 887 . . . 4  |-  ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y ) ) : ( ZZ  X.  NN ) -onto-> QQ
21 fodomnum 7927 . . . 4  |-  ( ( ZZ  X.  NN )  e.  dom  card  ->  ( ( x  e.  ZZ ,  y  e.  NN  |->  ( x  /  y
) ) : ( ZZ  X.  NN )
-onto-> QQ  ->  QQ  ~<_  ( ZZ 
X.  NN ) ) )
2211, 20, 21mp2 9 . . 3  |-  QQ  ~<_  ( ZZ 
X.  NN )
23 nnex 9995 . . . . . 6  |-  NN  e.  _V
2423enref 7131 . . . . 5  |-  NN  ~~  NN
25 xpen 7261 . . . . 5  |-  ( ( ZZ  ~~  NN  /\  NN  ~~  NN )  -> 
( ZZ  X.  NN )  ~~  ( NN  X.  NN ) )
266, 24, 25mp2an 654 . . . 4  |-  ( ZZ 
X.  NN )  ~~  ( NN  X.  NN )
27 xpnnen 12796 . . . 4  |-  ( NN 
X.  NN )  ~~  NN
2826, 27entri 7152 . . 3  |-  ( ZZ 
X.  NN )  ~~  NN
29 domentr 7157 . . 3  |-  ( ( QQ  ~<_  ( ZZ  X.  NN )  /\  ( ZZ  X.  NN )  ~~  NN )  ->  QQ  ~<_  NN )
3022, 28, 29mp2an 654 . 2  |-  QQ  ~<_  NN
31 qex 10575 . . 3  |-  QQ  e.  _V
32 nnssq 10572 . . 3  |-  NN  C_  QQ
33 ssdomg 7144 . . 3  |-  ( QQ  e.  _V  ->  ( NN  C_  QQ  ->  NN  ~<_  QQ ) )
3431, 32, 33mp2 9 . 2  |-  NN  ~<_  QQ
35 sbth 7218 . 2  |-  ( ( QQ  ~<_  NN  /\  NN  ~<_  QQ )  ->  QQ  ~~  NN )
3630, 34, 35mp2an 654 1  |-  QQ  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1652    e. wcel 1725   {cab 2421   E.wrex 2698   _Vcvv 2948    C_ wss 3312   class class class wbr 4204   Oncon0 4573   omcom 4836    X. cxp 4867   dom cdm 4869   ran crn 4870    Fn wfn 5440   -onto->wfo 5443  (class class class)co 6072    e. cmpt2 6074    ~~ cen 7097    ~<_ cdom 7098   cardccrd 7811    / cdiv 9666   NNcn 9989   ZZcz 10271   QQcq 10563
This theorem is referenced by:  rpnnen  12814  resdomq  12831  re2ndc  18820  ovolq  19375  opnmblALT  19483  vitali  19493  mbfimaopnlem  19535  mbfaddlem  19540  mblfinlem  26190  irrapx1  26828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-omul 6720  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-oi 7468  df-card 7815  df-acn 7818  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-n0 10211  df-z 10272  df-uz 10478  df-q 10564
  Copyright terms: Public domain W3C validator