MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopbaslem Unicode version

Theorem qtopbaslem 18099
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
qtopbas.1  |-  S  C_  RR*
Assertion
Ref Expression
qtopbaslem  |-  ( (,) " ( S  X.  S ) )  e.  TopBases

Proof of Theorem qtopbaslem
StepHypRef Expression
1 iooex 10557 . . . 4  |-  (,)  e.  _V
21rnex 4849 . . 3  |-  ran  (,)  e.  _V
3 imassrn 4932 . . 3  |-  ( (,) " ( S  X.  S ) )  C_  ran  (,)
42, 3ssexi 4056 . 2  |-  ( (,) " ( S  X.  S ) )  e. 
_V
5 qtopbas.1 . . . . . . . . 9  |-  S  C_  RR*
65sseli 3099 . . . . . . . 8  |-  ( z  e.  S  ->  z  e.  RR* )
75sseli 3099 . . . . . . . 8  |-  ( w  e.  S  ->  w  e.  RR* )
86, 7anim12i 551 . . . . . . 7  |-  ( ( z  e.  S  /\  w  e.  S )  ->  ( z  e.  RR*  /\  w  e.  RR* )
)
95sseli 3099 . . . . . . . 8  |-  ( v  e.  S  ->  v  e.  RR* )
105sseli 3099 . . . . . . . 8  |-  ( u  e.  S  ->  u  e.  RR* )
119, 10anim12i 551 . . . . . . 7  |-  ( ( v  e.  S  /\  u  e.  S )  ->  ( v  e.  RR*  /\  u  e.  RR* )
)
12 iooin 10568 . . . . . . 7  |-  ( ( ( z  e.  RR*  /\  w  e.  RR* )  /\  ( v  e.  RR*  /\  u  e.  RR* )
)  ->  ( (
z (,) w )  i^i  ( v (,) u ) )  =  ( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) ) )
138, 11, 12syl2an 465 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  =  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
) )
14 ifcl 3506 . . . . . . . . 9  |-  ( ( v  e.  S  /\  z  e.  S )  ->  if ( z  <_ 
v ,  v ,  z )  e.  S
)
1514ancoms 441 . . . . . . . 8  |-  ( ( z  e.  S  /\  v  e.  S )  ->  if ( z  <_ 
v ,  v ,  z )  e.  S
)
16 ifcl 3506 . . . . . . . 8  |-  ( ( w  e.  S  /\  u  e.  S )  ->  if ( w  <_  u ,  w ,  u )  e.  S
)
17 df-ov 5713 . . . . . . . . 9  |-  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
)  =  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )
18 opelxpi 4628 . . . . . . . . . 10  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  <. if ( z  <_  v , 
v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >.  e.  ( S  X.  S ) )
19 ioof 10619 . . . . . . . . . . . 12  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
20 ffun 5248 . . . . . . . . . . . 12  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
2119, 20ax-mp 10 . . . . . . . . . . 11  |-  Fun  (,)
22 xpss12 4699 . . . . . . . . . . . . 13  |-  ( ( S  C_  RR*  /\  S  C_ 
RR* )  ->  ( S  X.  S )  C_  ( RR*  X.  RR* )
)
235, 5, 22mp2an 656 . . . . . . . . . . . 12  |-  ( S  X.  S )  C_  ( RR*  X.  RR* )
2419fdmi 5251 . . . . . . . . . . . 12  |-  dom  (,)  =  ( RR*  X.  RR* )
2523, 24sseqtr4i 3132 . . . . . . . . . . 11  |-  ( S  X.  S )  C_  dom  (,)
26 funfvima2 5606 . . . . . . . . . . 11  |-  ( ( Fun  (,)  /\  ( S  X.  S )  C_  dom  (,) )  ->  ( <. if ( z  <_ 
v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u )
>.  e.  ( S  X.  S )  ->  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )  e.  ( (,) " ( S  X.  S ) ) ) )
2721, 25, 26mp2an 656 . . . . . . . . . 10  |-  ( <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >.  e.  ( S  X.  S )  ->  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )  e.  ( (,) " ( S  X.  S ) ) )
2818, 27syl 17 . . . . . . . . 9  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  ( (,) ` 
<. if ( z  <_ 
v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u )
>. )  e.  ( (,) " ( S  X.  S ) ) )
2917, 28syl5eqel 2337 . . . . . . . 8  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
)  e.  ( (,) " ( S  X.  S ) ) )
3015, 16, 29syl2an 465 . . . . . . 7  |-  ( ( ( z  e.  S  /\  v  e.  S
)  /\  ( w  e.  S  /\  u  e.  S ) )  -> 
( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) )  e.  ( (,) " ( S  X.  S ) ) )
3130an4s 802 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) )  e.  ( (,) " ( S  X.  S ) ) )
3213, 31eqeltrd 2327 . . . . 5  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
3332ralrimivva 2597 . . . 4  |-  ( ( z  e.  S  /\  w  e.  S )  ->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
3433rgen2a 2571 . . 3  |-  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) )
35 ffn 5246 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
3619, 35ax-mp 10 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
37 ineq1 3271 . . . . . . . 8  |-  ( x  =  ( (,) `  t
)  ->  ( x  i^i  y )  =  ( ( (,) `  t
)  i^i  y )
)
3837eleq1d 2319 . . . . . . 7  |-  ( x  =  ( (,) `  t
)  ->  ( (
x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
3938ralbidv 2527 . . . . . 6  |-  ( x  =  ( (,) `  t
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
4039ralima 5610 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
4136, 23, 40mp2an 656 . . . 4  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) )
42 fveq2 5377 . . . . . . . . . 10  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( (,) `  <. z ,  w >. ) )
43 df-ov 5713 . . . . . . . . . 10  |-  ( z (,) w )  =  ( (,) `  <. z ,  w >. )
4442, 43syl6eqr 2303 . . . . . . . . 9  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( z (,) w ) )
4544ineq1d 3277 . . . . . . . 8  |-  ( t  =  <. z ,  w >.  ->  ( ( (,) `  t )  i^i  y
)  =  ( ( z (,) w )  i^i  y ) )
4645eleq1d 2319 . . . . . . 7  |-  ( t  =  <. z ,  w >.  ->  ( ( ( (,) `  t )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) ) )
4746ralbidv 2527 . . . . . 6  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
48 ineq2 3272 . . . . . . . . . 10  |-  ( y  =  ( (,) `  t
)  ->  ( (
z (,) w )  i^i  y )  =  ( ( z (,) w )  i^i  ( (,) `  t ) ) )
4948eleq1d 2319 . . . . . . . . 9  |-  ( y  =  ( (,) `  t
)  ->  ( (
( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5049ralima 5610 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5136, 23, 50mp2an 656 . . . . . . 7  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) )
52 fveq2 5377 . . . . . . . . . . 11  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( (,) `  <. v ,  u >. ) )
53 df-ov 5713 . . . . . . . . . . 11  |-  ( v (,) u )  =  ( (,) `  <. v ,  u >. )
5452, 53syl6eqr 2303 . . . . . . . . . 10  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( v (,) u ) )
5554ineq2d 3278 . . . . . . . . 9  |-  ( t  =  <. v ,  u >.  ->  ( ( z (,) w )  i^i  ( (,) `  t
) )  =  ( ( z (,) w
)  i^i  ( v (,) u ) ) )
5655eleq1d 2319 . . . . . . . 8  |-  ( t  =  <. v ,  u >.  ->  ( ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5756ralxp 4734 . . . . . . 7  |-  ( A. t  e.  ( S  X.  S ) ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
5851, 57bitri 242 . . . . . 6  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
5947, 58syl6bb 254 . . . . 5  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6059ralxp 4734 . . . 4  |-  ( A. t  e.  ( S  X.  S ) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
6141, 60bitri 242 . . 3  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
6234, 61mpbir 202 . 2  |-  A. x  e.  ( (,) " ( S  X.  S ) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )
63 fiinbas 16522 . 2  |-  ( ( ( (,) " ( S  X.  S ) )  e.  _V  /\  A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) )  ->  ( (,) " ( S  X.  S ) )  e.  TopBases )
644, 62, 63mp2an 656 1  |-  ( (,) " ( S  X.  S ) )  e.  TopBases
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   _Vcvv 2727    i^i cin 3077    C_ wss 3078   ifcif 3470   ~Pcpw 3530   <.cop 3547   class class class wbr 3920    X. cxp 4578   dom cdm 4580   ran crn 4581   "cima 4583   Fun wfun 4586    Fn wfn 4587   -->wf 4588   ` cfv 4592  (class class class)co 5710   RRcr 8616   RR*cxr 8746    <_ cle 8748   (,)cioo 10534   TopBasesctb 16467
This theorem is referenced by:  qtopbas  18100  retopbas  18101
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-pre-lttri 8691  ax-pre-lttrn 8692
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-ioo 10538  df-bases 16470
  Copyright terms: Public domain W3C validator