MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopbaslem Structured version   Unicode version

Theorem qtopbaslem 18782
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
qtopbas.1  |-  S  C_  RR*
Assertion
Ref Expression
qtopbaslem  |-  ( (,) " ( S  X.  S ) )  e.  TopBases

Proof of Theorem qtopbaslem
Dummy variables  u  t  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 10929 . . . 4  |-  (,)  e.  _V
21rnex 5125 . . 3  |-  ran  (,)  e.  _V
3 imassrn 5208 . . 3  |-  ( (,) " ( S  X.  S ) )  C_  ran  (,)
42, 3ssexi 4340 . 2  |-  ( (,) " ( S  X.  S ) )  e. 
_V
5 qtopbas.1 . . . . . . . . 9  |-  S  C_  RR*
65sseli 3336 . . . . . . . 8  |-  ( z  e.  S  ->  z  e.  RR* )
75sseli 3336 . . . . . . . 8  |-  ( w  e.  S  ->  w  e.  RR* )
86, 7anim12i 550 . . . . . . 7  |-  ( ( z  e.  S  /\  w  e.  S )  ->  ( z  e.  RR*  /\  w  e.  RR* )
)
95sseli 3336 . . . . . . . 8  |-  ( v  e.  S  ->  v  e.  RR* )
105sseli 3336 . . . . . . . 8  |-  ( u  e.  S  ->  u  e.  RR* )
119, 10anim12i 550 . . . . . . 7  |-  ( ( v  e.  S  /\  u  e.  S )  ->  ( v  e.  RR*  /\  u  e.  RR* )
)
12 iooin 10940 . . . . . . 7  |-  ( ( ( z  e.  RR*  /\  w  e.  RR* )  /\  ( v  e.  RR*  /\  u  e.  RR* )
)  ->  ( (
z (,) w )  i^i  ( v (,) u ) )  =  ( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) ) )
138, 11, 12syl2an 464 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  =  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
) )
14 ifcl 3767 . . . . . . . . 9  |-  ( ( v  e.  S  /\  z  e.  S )  ->  if ( z  <_ 
v ,  v ,  z )  e.  S
)
1514ancoms 440 . . . . . . . 8  |-  ( ( z  e.  S  /\  v  e.  S )  ->  if ( z  <_ 
v ,  v ,  z )  e.  S
)
16 ifcl 3767 . . . . . . . 8  |-  ( ( w  e.  S  /\  u  e.  S )  ->  if ( w  <_  u ,  w ,  u )  e.  S
)
17 df-ov 6076 . . . . . . . . 9  |-  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
)  =  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )
18 opelxpi 4902 . . . . . . . . . 10  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  <. if ( z  <_  v , 
v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >.  e.  ( S  X.  S ) )
19 ioof 10992 . . . . . . . . . . . 12  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
20 ffun 5585 . . . . . . . . . . . 12  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
2119, 20ax-mp 8 . . . . . . . . . . 11  |-  Fun  (,)
22 xpss12 4973 . . . . . . . . . . . . 13  |-  ( ( S  C_  RR*  /\  S  C_ 
RR* )  ->  ( S  X.  S )  C_  ( RR*  X.  RR* )
)
235, 5, 22mp2an 654 . . . . . . . . . . . 12  |-  ( S  X.  S )  C_  ( RR*  X.  RR* )
2419fdmi 5588 . . . . . . . . . . . 12  |-  dom  (,)  =  ( RR*  X.  RR* )
2523, 24sseqtr4i 3373 . . . . . . . . . . 11  |-  ( S  X.  S )  C_  dom  (,)
26 funfvima2 5966 . . . . . . . . . . 11  |-  ( ( Fun  (,)  /\  ( S  X.  S )  C_  dom  (,) )  ->  ( <. if ( z  <_ 
v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u )
>.  e.  ( S  X.  S )  ->  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )  e.  ( (,) " ( S  X.  S ) ) ) )
2721, 25, 26mp2an 654 . . . . . . . . . 10  |-  ( <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >.  e.  ( S  X.  S )  ->  ( (,) `  <. if ( z  <_  v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u ) >. )  e.  ( (,) " ( S  X.  S ) ) )
2818, 27syl 16 . . . . . . . . 9  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  ( (,) ` 
<. if ( z  <_ 
v ,  v ,  z ) ,  if ( w  <_  u ,  w ,  u )
>. )  e.  ( (,) " ( S  X.  S ) ) )
2917, 28syl5eqel 2519 . . . . . . . 8  |-  ( ( if ( z  <_ 
v ,  v ,  z )  e.  S  /\  if ( w  <_  u ,  w ,  u )  e.  S
)  ->  ( if ( z  <_  v ,  v ,  z ) (,) if ( w  <_  u ,  w ,  u )
)  e.  ( (,) " ( S  X.  S ) ) )
3015, 16, 29syl2an 464 . . . . . . 7  |-  ( ( ( z  e.  S  /\  v  e.  S
)  /\  ( w  e.  S  /\  u  e.  S ) )  -> 
( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) )  e.  ( (,) " ( S  X.  S ) ) )
3130an4s 800 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( if ( z  <_  v ,  v ,  z ) (,)
if ( w  <_  u ,  w ,  u ) )  e.  ( (,) " ( S  X.  S ) ) )
3213, 31eqeltrd 2509 . . . . 5  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
3332ralrimivva 2790 . . . 4  |-  ( ( z  e.  S  /\  w  e.  S )  ->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
3433rgen2a 2764 . . 3  |-  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) )
35 ffn 5583 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
3619, 35ax-mp 8 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
37 ineq1 3527 . . . . . . . 8  |-  ( x  =  ( (,) `  t
)  ->  ( x  i^i  y )  =  ( ( (,) `  t
)  i^i  y )
)
3837eleq1d 2501 . . . . . . 7  |-  ( x  =  ( (,) `  t
)  ->  ( (
x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
3938ralbidv 2717 . . . . . 6  |-  ( x  =  ( (,) `  t
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
4039ralima 5970 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
4136, 23, 40mp2an 654 . . . 4  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) )
42 fveq2 5720 . . . . . . . . . 10  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( (,) `  <. z ,  w >. ) )
43 df-ov 6076 . . . . . . . . . 10  |-  ( z (,) w )  =  ( (,) `  <. z ,  w >. )
4442, 43syl6eqr 2485 . . . . . . . . 9  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( z (,) w ) )
4544ineq1d 3533 . . . . . . . 8  |-  ( t  =  <. z ,  w >.  ->  ( ( (,) `  t )  i^i  y
)  =  ( ( z (,) w )  i^i  y ) )
4645eleq1d 2501 . . . . . . 7  |-  ( t  =  <. z ,  w >.  ->  ( ( ( (,) `  t )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) ) )
4746ralbidv 2717 . . . . . 6  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
48 ineq2 3528 . . . . . . . . . 10  |-  ( y  =  ( (,) `  t
)  ->  ( (
z (,) w )  i^i  y )  =  ( ( z (,) w )  i^i  ( (,) `  t ) ) )
4948eleq1d 2501 . . . . . . . . 9  |-  ( y  =  ( (,) `  t
)  ->  ( (
( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5049ralima 5970 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5136, 23, 50mp2an 654 . . . . . . 7  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) )
52 fveq2 5720 . . . . . . . . . . 11  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( (,) `  <. v ,  u >. ) )
53 df-ov 6076 . . . . . . . . . . 11  |-  ( v (,) u )  =  ( (,) `  <. v ,  u >. )
5452, 53syl6eqr 2485 . . . . . . . . . 10  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( v (,) u ) )
5554ineq2d 3534 . . . . . . . . 9  |-  ( t  =  <. v ,  u >.  ->  ( ( z (,) w )  i^i  ( (,) `  t
) )  =  ( ( z (,) w
)  i^i  ( v (,) u ) ) )
5655eleq1d 2501 . . . . . . . 8  |-  ( t  =  <. v ,  u >.  ->  ( ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
5756ralxp 5008 . . . . . . 7  |-  ( A. t  e.  ( S  X.  S ) ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
5851, 57bitri 241 . . . . . 6  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
5947, 58syl6bb 253 . . . . 5  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6059ralxp 5008 . . . 4  |-  ( A. t  e.  ( S  X.  S ) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
6141, 60bitri 241 . . 3  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
6234, 61mpbir 201 . 2  |-  A. x  e.  ( (,) " ( S  X.  S ) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )
63 fiinbas 17007 . 2  |-  ( ( ( (,) " ( S  X.  S ) )  e.  _V  /\  A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) )  ->  ( (,) " ( S  X.  S ) )  e.  TopBases )
644, 62, 63mp2an 654 1  |-  ( (,) " ( S  X.  S ) )  e.  TopBases
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    i^i cin 3311    C_ wss 3312   ifcif 3731   ~Pcpw 3791   <.cop 3809   class class class wbr 4204    X. cxp 4868   dom cdm 4870   ran crn 4871   "cima 4873   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   RRcr 8979   RR*cxr 9109    <_ cle 9111   (,)cioo 10906   TopBasesctb 16952
This theorem is referenced by:  qtopbas  18783  retopbas  18784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-pre-lttri 9054  ax-pre-lttrn 9055
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-ioo 10910  df-bases 16955
  Copyright terms: Public domain W3C validator