Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quantriv Unicode version

Theorem quantriv 24839
Description: Any wff can be trivially quantified, so long as the quantifier's set is distinct from said wff.

See also 19.9v 1663. (Contributed by Anthony Hart, 13-Sep-2011.)

Assertion
Ref Expression
quantriv  |-  ( A. x ph  <->  ph )
Distinct variable group:    ph, x

Proof of Theorem quantriv
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ x ph
2119.3 1781 1  |-  ( A. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   A.wal 1527
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-nf 1532
  Copyright terms: Public domain W3C validator