MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart Unicode version

Theorem quart 19989
Description: The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 22857) if all the substitutions are performed. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart.a  |-  ( ph  ->  A  e.  CC )
quart.b  |-  ( ph  ->  B  e.  CC )
quart.c  |-  ( ph  ->  C  e.  CC )
quart.d  |-  ( ph  ->  D  e.  CC )
quart.x  |-  ( ph  ->  X  e.  CC )
quart.e  |-  ( ph  ->  E  =  -u ( A  /  4 ) )
quart.p  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
quart.q  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
quart.r  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
quart.u  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
quart.v  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
quart.w  |-  ( ph  ->  W  =  ( sqr `  ( ( V ^
2 )  -  (
4  x.  ( U ^ 3 ) ) ) ) )
quart.s  |-  ( ph  ->  S  =  ( ( sqr `  M )  /  2 ) )
quart.m  |-  ( ph  ->  M  =  -u (
( ( ( 2  x.  P )  +  T )  +  ( U  /  T ) )  /  3 ) )
quart.t  |-  ( ph  ->  T  =  ( ( ( V  +  W
)  /  2 )  ^ c  ( 1  /  3 ) ) )
quart.t0  |-  ( ph  ->  T  =/=  0 )
quart.m0  |-  ( ph  ->  M  =/=  0 )
quart.i  |-  ( ph  ->  I  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) ) ) )
quart.j  |-  ( ph  ->  J  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) ) ) )
Assertion
Ref Expression
quart  |-  ( ph  ->  ( ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )  =  0  <->  ( ( X  =  ( ( E  -  S )  +  I )  \/  X  =  ( ( E  -  S )  -  I ) )  \/  ( X  =  ( ( E  +  S
)  +  J )  \/  X  =  ( ( E  +  S
)  -  J ) ) ) ) )

Proof of Theorem quart
StepHypRef Expression
1 quart.a . . . 4  |-  ( ph  ->  A  e.  CC )
2 quart.b . . . 4  |-  ( ph  ->  B  e.  CC )
3 quart.c . . . 4  |-  ( ph  ->  C  e.  CC )
4 quart.d . . . 4  |-  ( ph  ->  D  e.  CC )
5 quart.p . . . 4  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
6 quart.q . . . 4  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
7 quart.r . . . 4  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
8 quart.x . . . 4  |-  ( ph  ->  X  e.  CC )
9 quart.e . . . . . 6  |-  ( ph  ->  E  =  -u ( A  /  4 ) )
109oveq2d 5726 . . . . 5  |-  ( ph  ->  ( X  -  E
)  =  ( X  -  -u ( A  / 
4 ) ) )
11 4cn 9700 . . . . . . . 8  |-  4  e.  CC
1211a1i 12 . . . . . . 7  |-  ( ph  ->  4  e.  CC )
13 4nn 9758 . . . . . . . . 9  |-  4  e.  NN
1413nnne0i 9660 . . . . . . . 8  |-  4  =/=  0
1514a1i 12 . . . . . . 7  |-  ( ph  ->  4  =/=  0 )
161, 12, 15divcld 9416 . . . . . 6  |-  ( ph  ->  ( A  /  4
)  e.  CC )
178, 16subnegd 9044 . . . . 5  |-  ( ph  ->  ( X  -  -u ( A  /  4 ) )  =  ( X  +  ( A  /  4
) ) )
1810, 17eqtrd 2285 . . . 4  |-  ( ph  ->  ( X  -  E
)  =  ( X  +  ( A  / 
4 ) ) )
191, 2, 3, 4, 5, 6, 7, 8, 18quart1 19984 . . 3  |-  ( ph  ->  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )  =  ( ( ( ( X  -  E
) ^ 4 )  +  ( P  x.  ( ( X  -  E ) ^ 2 ) ) )  +  ( ( Q  x.  ( X  -  E
) )  +  R
) ) )
2019eqeq1d 2261 . 2  |-  ( ph  ->  ( ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )  =  0  <->  ( (
( ( X  -  E ) ^ 4 )  +  ( P  x.  ( ( X  -  E ) ^
2 ) ) )  +  ( ( Q  x.  ( X  -  E ) )  +  R ) )  =  0 ) )
211, 2, 3, 4, 5, 6, 7quart1cl 19982 . . . 4  |-  ( ph  ->  ( P  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )
)
2221simp1d 972 . . 3  |-  ( ph  ->  P  e.  CC )
2321simp2d 973 . . 3  |-  ( ph  ->  Q  e.  CC )
2416negcld 9024 . . . . 5  |-  ( ph  -> 
-u ( A  / 
4 )  e.  CC )
259, 24eqeltrd 2327 . . . 4  |-  ( ph  ->  E  e.  CC )
268, 25subcld 9037 . . 3  |-  ( ph  ->  ( X  -  E
)  e.  CC )
27 quart.u . . . . 5  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
28 quart.v . . . . 5  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
29 quart.w . . . . 5  |-  ( ph  ->  W  =  ( sqr `  ( ( V ^
2 )  -  (
4  x.  ( U ^ 3 ) ) ) ) )
30 quart.s . . . . 5  |-  ( ph  ->  S  =  ( ( sqr `  M )  /  2 ) )
31 quart.m . . . . 5  |-  ( ph  ->  M  =  -u (
( ( ( 2  x.  P )  +  T )  +  ( U  /  T ) )  /  3 ) )
32 quart.t . . . . 5  |-  ( ph  ->  T  =  ( ( ( V  +  W
)  /  2 )  ^ c  ( 1  /  3 ) ) )
33 quart.t0 . . . . 5  |-  ( ph  ->  T  =/=  0 )
341, 2, 3, 4, 1, 9, 5, 6, 7, 27, 28, 29, 30, 31, 32, 33quartlem3 19987 . . . 4  |-  ( ph  ->  ( S  e.  CC  /\  M  e.  CC  /\  T  e.  CC )
)
3534simp1d 972 . . 3  |-  ( ph  ->  S  e.  CC )
3630oveq2d 5726 . . . . . 6  |-  ( ph  ->  ( 2  x.  S
)  =  ( 2  x.  ( ( sqr `  M )  /  2
) ) )
3734simp2d 973 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
3837sqrcld 11796 . . . . . . 7  |-  ( ph  ->  ( sqr `  M
)  e.  CC )
39 2cn 9696 . . . . . . . 8  |-  2  e.  CC
4039a1i 12 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
41 2ne0 9709 . . . . . . . 8  |-  2  =/=  0
4241a1i 12 . . . . . . 7  |-  ( ph  ->  2  =/=  0 )
4338, 40, 42divcan2d 9418 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( sqr `  M
)  /  2 ) )  =  ( sqr `  M ) )
4436, 43eqtrd 2285 . . . . 5  |-  ( ph  ->  ( 2  x.  S
)  =  ( sqr `  M ) )
4544oveq1d 5725 . . . 4  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( sqr `  M ) ^ 2 ) )
4637sqsqrd 11798 . . . 4  |-  ( ph  ->  ( ( sqr `  M
) ^ 2 )  =  M )
4745, 46eqtr2d 2286 . . 3  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
48 quart.m0 . . 3  |-  ( ph  ->  M  =/=  0 )
49 quart.i . . . . 5  |-  ( ph  ->  I  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) ) ) )
50 quart.j . . . . 5  |-  ( ph  ->  J  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) ) ) )
511, 2, 3, 4, 1, 9, 5, 6, 7, 27, 28, 29, 30, 31, 32, 33, 48, 49, 50quartlem4 19988 . . . 4  |-  ( ph  ->  ( S  =/=  0  /\  I  e.  CC  /\  J  e.  CC ) )
5251simp2d 973 . . 3  |-  ( ph  ->  I  e.  CC )
5349oveq1d 5725 . . . 4  |-  ( ph  ->  ( I ^ 2 )  =  ( ( sqr `  ( (
-u ( S ^
2 )  -  ( P  /  2 ) )  +  ( ( Q  /  4 )  /  S ) ) ) ^ 2 ) )
5435sqcld 11121 . . . . . . . 8  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
5554negcld 9024 . . . . . . 7  |-  ( ph  -> 
-u ( S ^
2 )  e.  CC )
5622halfcld 9835 . . . . . . 7  |-  ( ph  ->  ( P  /  2
)  e.  CC )
5755, 56subcld 9037 . . . . . 6  |-  ( ph  ->  ( -u ( S ^ 2 )  -  ( P  /  2
) )  e.  CC )
5823, 12, 15divcld 9416 . . . . . . 7  |-  ( ph  ->  ( Q  /  4
)  e.  CC )
5951simp1d 972 . . . . . . 7  |-  ( ph  ->  S  =/=  0 )
6058, 35, 59divcld 9416 . . . . . 6  |-  ( ph  ->  ( ( Q  / 
4 )  /  S
)  e.  CC )
6157, 60addcld 8734 . . . . 5  |-  ( ph  ->  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) )  e.  CC )
6261sqsqrd 11798 . . . 4  |-  ( ph  ->  ( ( sqr `  (
( -u ( S ^
2 )  -  ( P  /  2 ) )  +  ( ( Q  /  4 )  /  S ) ) ) ^ 2 )  =  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) ) )
6353, 62eqtrd 2285 . . 3  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( P  /  2 ) )  +  ( ( Q  /  4 )  /  S ) ) )
6421simp3d 974 . . 3  |-  ( ph  ->  R  e.  CC )
65 ax-1cn 8675 . . . . . 6  |-  1  e.  CC
6665a1i 12 . . . . 5  |-  ( ph  ->  1  e.  CC )
67 3nn 9757 . . . . . . 7  |-  3  e.  NN
6867nnzi 9926 . . . . . 6  |-  3  e.  ZZ
69 1exp 11009 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
1 ^ 3 )  =  1 )
7068, 69mp1i 13 . . . . 5  |-  ( ph  ->  ( 1 ^ 3 )  =  1 )
7134simp3d 974 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  CC )
7271mulid2d 8733 . . . . . . . . . 10  |-  ( ph  ->  ( 1  x.  T
)  =  T )
7372oveq2d 5726 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  P )  +  ( 1  x.  T ) )  =  ( ( 2  x.  P )  +  T ) )
7472oveq2d 5726 . . . . . . . . 9  |-  ( ph  ->  ( U  /  (
1  x.  T ) )  =  ( U  /  T ) )
7573, 74oveq12d 5728 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  P )  +  ( 1  x.  T
) )  +  ( U  /  ( 1  x.  T ) ) )  =  ( ( ( 2  x.  P
)  +  T )  +  ( U  /  T ) ) )
7675oveq1d 5725 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  P )  +  ( 1  x.  T ) )  +  ( U  /  (
1  x.  T ) ) )  /  3
)  =  ( ( ( ( 2  x.  P )  +  T
)  +  ( U  /  T ) )  /  3 ) )
7776negeqd 8926 . . . . . 6  |-  ( ph  -> 
-u ( ( ( ( 2  x.  P
)  +  ( 1  x.  T ) )  +  ( U  / 
( 1  x.  T
) ) )  / 
3 )  =  -u ( ( ( ( 2  x.  P )  +  T )  +  ( U  /  T
) )  /  3
) )
7831, 77eqtr4d 2288 . . . . 5  |-  ( ph  ->  M  =  -u (
( ( ( 2  x.  P )  +  ( 1  x.  T
) )  +  ( U  /  ( 1  x.  T ) ) )  /  3 ) )
79 oveq1 5717 . . . . . . . 8  |-  ( x  =  1  ->  (
x ^ 3 )  =  ( 1 ^ 3 ) )
8079eqeq1d 2261 . . . . . . 7  |-  ( x  =  1  ->  (
( x ^ 3 )  =  1  <->  (
1 ^ 3 )  =  1 ) )
81 oveq1 5717 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
x  x.  T )  =  ( 1  x.  T ) )
8281oveq2d 5726 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
( 2  x.  P
)  +  ( x  x.  T ) )  =  ( ( 2  x.  P )  +  ( 1  x.  T
) ) )
8381oveq2d 5726 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( U  /  ( x  x.  T ) )  =  ( U  /  (
1  x.  T ) ) )
8482, 83oveq12d 5728 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( ( 2  x.  P )  +  ( x  x.  T ) )  +  ( U  /  ( x  x.  T ) ) )  =  ( ( ( 2  x.  P )  +  ( 1  x.  T ) )  +  ( U  /  (
1  x.  T ) ) ) )
8584oveq1d 5725 . . . . . . . . 9  |-  ( x  =  1  ->  (
( ( ( 2  x.  P )  +  ( x  x.  T
) )  +  ( U  /  ( x  x.  T ) ) )  /  3 )  =  ( ( ( ( 2  x.  P
)  +  ( 1  x.  T ) )  +  ( U  / 
( 1  x.  T
) ) )  / 
3 ) )
8685negeqd 8926 . . . . . . . 8  |-  ( x  =  1  ->  -u (
( ( ( 2  x.  P )  +  ( x  x.  T
) )  +  ( U  /  ( x  x.  T ) ) )  /  3 )  =  -u ( ( ( ( 2  x.  P
)  +  ( 1  x.  T ) )  +  ( U  / 
( 1  x.  T
) ) )  / 
3 ) )
8786eqeq2d 2264 . . . . . . 7  |-  ( x  =  1  ->  ( M  =  -u ( ( ( ( 2  x.  P )  +  ( x  x.  T ) )  +  ( U  /  ( x  x.  T ) ) )  /  3 )  <->  M  =  -u ( ( ( ( 2  x.  P )  +  ( 1  x.  T ) )  +  ( U  /  (
1  x.  T ) ) )  /  3
) ) )
8880, 87anbi12d 694 . . . . . 6  |-  ( x  =  1  ->  (
( ( x ^
3 )  =  1  /\  M  =  -u ( ( ( ( 2  x.  P )  +  ( x  x.  T ) )  +  ( U  /  (
x  x.  T ) ) )  /  3
) )  <->  ( (
1 ^ 3 )  =  1  /\  M  =  -u ( ( ( ( 2  x.  P
)  +  ( 1  x.  T ) )  +  ( U  / 
( 1  x.  T
) ) )  / 
3 ) ) ) )
8988rcla4ev 2821 . . . . 5  |-  ( ( 1  e.  CC  /\  ( ( 1 ^ 3 )  =  1  /\  M  =  -u ( ( ( ( 2  x.  P )  +  ( 1  x.  T ) )  +  ( U  /  (
1  x.  T ) ) )  /  3
) ) )  ->  E. x  e.  CC  ( ( x ^
3 )  =  1  /\  M  =  -u ( ( ( ( 2  x.  P )  +  ( x  x.  T ) )  +  ( U  /  (
x  x.  T ) ) )  /  3
) ) )
9066, 70, 78, 89syl12anc 1185 . . . 4  |-  ( ph  ->  E. x  e.  CC  ( ( x ^
3 )  =  1  /\  M  =  -u ( ( ( ( 2  x.  P )  +  ( x  x.  T ) )  +  ( U  /  (
x  x.  T ) ) )  /  3
) ) )
91 mulcl 8701 . . . . . 6  |-  ( ( 2  e.  CC  /\  P  e.  CC )  ->  ( 2  x.  P
)  e.  CC )
9239, 22, 91sylancr 647 . . . . 5  |-  ( ph  ->  ( 2  x.  P
)  e.  CC )
9322sqcld 11121 . . . . . 6  |-  ( ph  ->  ( P ^ 2 )  e.  CC )
94 mulcl 8701 . . . . . . 7  |-  ( ( 4  e.  CC  /\  R  e.  CC )  ->  ( 4  x.  R
)  e.  CC )
9511, 64, 94sylancr 647 . . . . . 6  |-  ( ph  ->  ( 4  x.  R
)  e.  CC )
9693, 95subcld 9037 . . . . 5  |-  ( ph  ->  ( ( P ^
2 )  -  (
4  x.  R ) )  e.  CC )
9723sqcld 11121 . . . . . 6  |-  ( ph  ->  ( Q ^ 2 )  e.  CC )
9897negcld 9024 . . . . 5  |-  ( ph  -> 
-u ( Q ^
2 )  e.  CC )
9932oveq1d 5725 . . . . . 6  |-  ( ph  ->  ( T ^ 3 )  =  ( ( ( ( V  +  W )  /  2
)  ^ c  ( 1  /  3 ) ) ^ 3 ) )
1001, 2, 3, 4, 1, 9, 5, 6, 7, 27, 28, 29quartlem2 19986 . . . . . . . . . 10  |-  ( ph  ->  ( U  e.  CC  /\  V  e.  CC  /\  W  e.  CC )
)
101100simp2d 973 . . . . . . . . 9  |-  ( ph  ->  V  e.  CC )
102100simp3d 974 . . . . . . . . 9  |-  ( ph  ->  W  e.  CC )
103101, 102addcld 8734 . . . . . . . 8  |-  ( ph  ->  ( V  +  W
)  e.  CC )
104103halfcld 9835 . . . . . . 7  |-  ( ph  ->  ( ( V  +  W )  /  2
)  e.  CC )
105 cxproot 19905 . . . . . . 7  |-  ( ( ( ( V  +  W )  /  2
)  e.  CC  /\  3  e.  NN )  ->  ( ( ( ( V  +  W )  /  2 )  ^ c  ( 1  / 
3 ) ) ^
3 )  =  ( ( V  +  W
)  /  2 ) )
106104, 67, 105sylancl 646 . . . . . 6  |-  ( ph  ->  ( ( ( ( V  +  W )  /  2 )  ^ c  ( 1  / 
3 ) ) ^
3 )  =  ( ( V  +  W
)  /  2 ) )
10799, 106eqtrd 2285 . . . . 5  |-  ( ph  ->  ( T ^ 3 )  =  ( ( V  +  W )  /  2 ) )
10829oveq1d 5725 . . . . . 6  |-  ( ph  ->  ( W ^ 2 )  =  ( ( sqr `  ( ( V ^ 2 )  -  ( 4  x.  ( U ^ 3 ) ) ) ) ^ 2 ) )
109101sqcld 11121 . . . . . . . 8  |-  ( ph  ->  ( V ^ 2 )  e.  CC )
110100simp1d 972 . . . . . . . . . 10  |-  ( ph  ->  U  e.  CC )
111 3nn0 9862 . . . . . . . . . 10  |-  3  e.  NN0
112 expcl 10999 . . . . . . . . . 10  |-  ( ( U  e.  CC  /\  3  e.  NN0 )  -> 
( U ^ 3 )  e.  CC )
113110, 111, 112sylancl 646 . . . . . . . . 9  |-  ( ph  ->  ( U ^ 3 )  e.  CC )
114 mulcl 8701 . . . . . . . . 9  |-  ( ( 4  e.  CC  /\  ( U ^ 3 )  e.  CC )  -> 
( 4  x.  ( U ^ 3 ) )  e.  CC )
11511, 113, 114sylancr 647 . . . . . . . 8  |-  ( ph  ->  ( 4  x.  ( U ^ 3 ) )  e.  CC )
116109, 115subcld 9037 . . . . . . 7  |-  ( ph  ->  ( ( V ^
2 )  -  (
4  x.  ( U ^ 3 ) ) )  e.  CC )
117116sqsqrd 11798 . . . . . 6  |-  ( ph  ->  ( ( sqr `  (
( V ^ 2 )  -  ( 4  x.  ( U ^
3 ) ) ) ) ^ 2 )  =  ( ( V ^ 2 )  -  ( 4  x.  ( U ^ 3 ) ) ) )
118108, 117eqtrd 2285 . . . . 5  |-  ( ph  ->  ( W ^ 2 )  =  ( ( V ^ 2 )  -  ( 4  x.  ( U ^ 3 ) ) ) )
11922, 23, 64, 27, 28quartlem1 19985 . . . . . 6  |-  ( ph  ->  ( U  =  ( ( ( 2  x.  P ) ^ 2 )  -  ( 3  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) )  /\  V  =  ( ( ( 2  x.  ( ( 2  x.  P ) ^ 3 ) )  -  (
9  x.  ( ( 2  x.  P )  x.  ( ( P ^ 2 )  -  ( 4  x.  R
) ) ) ) )  +  (; 2 7  x.  -u ( Q ^ 2 ) ) ) ) )
120119simpld 447 . . . . 5  |-  ( ph  ->  U  =  ( ( ( 2  x.  P
) ^ 2 )  -  ( 3  x.  ( ( P ^
2 )  -  (
4  x.  R ) ) ) ) )
121119simprd 451 . . . . 5  |-  ( ph  ->  V  =  ( ( ( 2  x.  (
( 2  x.  P
) ^ 3 ) )  -  ( 9  x.  ( ( 2  x.  P )  x.  ( ( P ^
2 )  -  (
4  x.  R ) ) ) ) )  +  (; 2 7  x.  -u ( Q ^ 2 ) ) ) )
12292, 96, 98, 37, 71, 107, 102, 118, 120, 121, 33mcubic 19975 . . . 4  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  P )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( P ^ 2 )  -  ( 4  x.  R ) )  x.  M )  +  -u ( Q ^ 2 ) ) )  =  0  <->  E. x  e.  CC  ( ( x ^
3 )  =  1  /\  M  =  -u ( ( ( ( 2  x.  P )  +  ( x  x.  T ) )  +  ( U  /  (
x  x.  T ) ) )  /  3
) ) ) )
12390, 122mpbird 225 . . 3  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  P )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( P ^
2 )  -  (
4  x.  R ) )  x.  M )  +  -u ( Q ^
2 ) ) )  =  0 )
12451simp3d 974 . . 3  |-  ( ph  ->  J  e.  CC )
12550oveq1d 5725 . . . 4  |-  ( ph  ->  ( J ^ 2 )  =  ( ( sqr `  ( (
-u ( S ^
2 )  -  ( P  /  2 ) )  -  ( ( Q  /  4 )  /  S ) ) ) ^ 2 ) )
12657, 60subcld 9037 . . . . 5  |-  ( ph  ->  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) )  e.  CC )
127126sqsqrd 11798 . . . 4  |-  ( ph  ->  ( ( sqr `  (
( -u ( S ^
2 )  -  ( P  /  2 ) )  -  ( ( Q  /  4 )  /  S ) ) ) ^ 2 )  =  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) ) )
128125, 127eqtrd 2285 . . 3  |-  ( ph  ->  ( J ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( P  /  2 ) )  -  ( ( Q  /  4 )  /  S ) ) )
12922, 23, 26, 35, 47, 48, 52, 63, 64, 123, 124, 128dquart 19981 . 2  |-  ( ph  ->  ( ( ( ( ( X  -  E
) ^ 4 )  +  ( P  x.  ( ( X  -  E ) ^ 2 ) ) )  +  ( ( Q  x.  ( X  -  E
) )  +  R
) )  =  0  <-> 
( ( ( X  -  E )  =  ( -u S  +  I )  \/  ( X  -  E )  =  ( -u S  -  I ) )  \/  ( ( X  -  E )  =  ( S  +  J )  \/  ( X  -  E )  =  ( S  -  J ) ) ) ) )
13035negcld 9024 . . . . . . . 8  |-  ( ph  -> 
-u S  e.  CC )
131130, 52addcld 8734 . . . . . . 7  |-  ( ph  ->  ( -u S  +  I )  e.  CC )
1328, 25, 131subaddd 9055 . . . . . 6  |-  ( ph  ->  ( ( X  -  E )  =  (
-u S  +  I
)  <->  ( E  +  ( -u S  +  I
) )  =  X ) )
13325, 35negsubd 9043 . . . . . . . . 9  |-  ( ph  ->  ( E  +  -u S )  =  ( E  -  S ) )
134133oveq1d 5725 . . . . . . . 8  |-  ( ph  ->  ( ( E  +  -u S )  +  I
)  =  ( ( E  -  S )  +  I ) )
13525, 130, 52addassd 8737 . . . . . . . 8  |-  ( ph  ->  ( ( E  +  -u S )  +  I
)  =  ( E  +  ( -u S  +  I ) ) )
136134, 135eqtr3d 2287 . . . . . . 7  |-  ( ph  ->  ( ( E  -  S )  +  I
)  =  ( E  +  ( -u S  +  I ) ) )
137136eqeq1d 2261 . . . . . 6  |-  ( ph  ->  ( ( ( E  -  S )  +  I )  =  X  <-> 
( E  +  (
-u S  +  I
) )  =  X ) )
138132, 137bitr4d 249 . . . . 5  |-  ( ph  ->  ( ( X  -  E )  =  (
-u S  +  I
)  <->  ( ( E  -  S )  +  I )  =  X ) )
139 eqcom 2255 . . . . 5  |-  ( ( ( E  -  S
)  +  I )  =  X  <->  X  =  ( ( E  -  S )  +  I
) )
140138, 139syl6bb 254 . . . 4  |-  ( ph  ->  ( ( X  -  E )  =  (
-u S  +  I
)  <->  X  =  (
( E  -  S
)  +  I ) ) )
141130, 52subcld 9037 . . . . . . 7  |-  ( ph  ->  ( -u S  -  I )  e.  CC )
1428, 25, 141subaddd 9055 . . . . . 6  |-  ( ph  ->  ( ( X  -  E )  =  (
-u S  -  I
)  <->  ( E  +  ( -u S  -  I
) )  =  X ) )
143133oveq1d 5725 . . . . . . . 8  |-  ( ph  ->  ( ( E  +  -u S )  -  I
)  =  ( ( E  -  S )  -  I ) )
14425, 130, 52addsubassd 9057 . . . . . . . 8  |-  ( ph  ->  ( ( E  +  -u S )  -  I
)  =  ( E  +  ( -u S  -  I ) ) )
145143, 144eqtr3d 2287 . . . . . . 7  |-  ( ph  ->  ( ( E  -  S )  -  I
)  =  ( E  +  ( -u S  -  I ) ) )
146145eqeq1d 2261 . . . . . 6  |-  ( ph  ->  ( ( ( E  -  S )  -  I )  =  X  <-> 
( E  +  (
-u S  -  I
) )  =  X ) )
147142, 146bitr4d 249 . . . . 5  |-  ( ph  ->  ( ( X  -  E )  =  (
-u S  -  I
)  <->  ( ( E  -  S )  -  I )  =  X ) )
148 eqcom 2255 . . . . 5  |-  ( ( ( E  -  S
)  -  I )  =  X  <->  X  =  ( ( E  -  S )  -  I
) )
149147, 148syl6bb 254 . . . 4  |-  ( ph  ->  ( ( X  -  E )  =  (
-u S  -  I
)  <->  X  =  (
( E  -  S
)  -  I ) ) )
150140, 149orbi12d 693 . . 3  |-  ( ph  ->  ( ( ( X  -  E )  =  ( -u S  +  I )  \/  ( X  -  E )  =  ( -u S  -  I ) )  <->  ( X  =  ( ( E  -  S )  +  I )  \/  X  =  ( ( E  -  S )  -  I ) ) ) )
15135, 124addcld 8734 . . . . . . 7  |-  ( ph  ->  ( S  +  J
)  e.  CC )
1528, 25, 151subaddd 9055 . . . . . 6  |-  ( ph  ->  ( ( X  -  E )  =  ( S  +  J )  <-> 
( E  +  ( S  +  J ) )  =  X ) )
15325, 35, 124addassd 8737 . . . . . . 7  |-  ( ph  ->  ( ( E  +  S )  +  J
)  =  ( E  +  ( S  +  J ) ) )
154153eqeq1d 2261 . . . . . 6  |-  ( ph  ->  ( ( ( E  +  S )  +  J )  =  X  <-> 
( E  +  ( S  +  J ) )  =  X ) )
155152, 154bitr4d 249 . . . . 5  |-  ( ph  ->  ( ( X  -  E )  =  ( S  +  J )  <-> 
( ( E  +  S )  +  J
)  =  X ) )
156 eqcom 2255 . . . . 5  |-  ( ( ( E  +  S
)  +  J )  =  X  <->  X  =  ( ( E  +  S )  +  J
) )
157155, 156syl6bb 254 . . . 4  |-  ( ph  ->  ( ( X  -  E )  =  ( S  +  J )  <-> 
X  =  ( ( E  +  S )  +  J ) ) )
15835, 124subcld 9037 . . . . . . 7  |-  ( ph  ->  ( S  -  J
)  e.  CC )
1598, 25, 158subaddd 9055 . . . . . 6  |-  ( ph  ->  ( ( X  -  E )  =  ( S  -  J )  <-> 
( E  +  ( S  -  J ) )  =  X ) )
16025, 35, 124addsubassd 9057 . . . . . . 7  |-  ( ph  ->  ( ( E  +  S )  -  J
)  =  ( E  +  ( S  -  J ) ) )
161160eqeq1d 2261 . . . . . 6  |-  ( ph  ->  ( ( ( E  +  S )  -  J )  =  X  <-> 
( E  +  ( S  -  J ) )  =  X ) )
162159, 161bitr4d 249 . . . . 5  |-  ( ph  ->  ( ( X  -  E )  =  ( S  -  J )  <-> 
( ( E  +  S )  -  J
)  =  X ) )
163 eqcom 2255 . . . . 5  |-  ( ( ( E  +  S
)  -  J )  =  X  <->  X  =  ( ( E  +  S )  -  J
) )
164162, 163syl6bb 254 . . . 4  |-  ( ph  ->  ( ( X  -  E )  =  ( S  -  J )  <-> 
X  =  ( ( E  +  S )  -  J ) ) )
165157, 164orbi12d 693 . . 3  |-  ( ph  ->  ( ( ( X  -  E )  =  ( S  +  J
)  \/  ( X  -  E )  =  ( S  -  J
) )  <->  ( X  =  ( ( E  +  S )  +  J )  \/  X  =  ( ( E  +  S )  -  J ) ) ) )
166150, 165orbi12d 693 . 2  |-  ( ph  ->  ( ( ( ( X  -  E )  =  ( -u S  +  I )  \/  ( X  -  E )  =  ( -u S  -  I ) )  \/  ( ( X  -  E )  =  ( S  +  J )  \/  ( X  -  E )  =  ( S  -  J ) ) )  <->  ( ( X  =  ( ( E  -  S )  +  I )  \/  X  =  ( ( E  -  S )  -  I ) )  \/  ( X  =  ( ( E  +  S
)  +  J )  \/  X  =  ( ( E  +  S
)  -  J ) ) ) ) )
16720, 129, 1663bitrd 272 1  |-  ( ph  ->  ( ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )  =  0  <->  ( ( X  =  ( ( E  -  S )  +  I )  \/  X  =  ( ( E  -  S )  -  I ) )  \/  ( X  =  ( ( E  +  S
)  +  J )  \/  X  =  ( ( E  +  S
)  -  J ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    - cmin 8917   -ucneg 8918    / cdiv 9303   NNcn 9626   2c2 9675   3c3 9676   4c4 9677   5c5 9678   6c6 9679   7c7 9680   8c8 9681   9c9 9682   NN0cn0 9844   ZZcz 9903  ;cdc 10003   ^cexp 10982   sqrcsqr 11595    ^ c ccxp 19745
This theorem is referenced by:  quartfull  22857
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747
  Copyright terms: Public domain W3C validator