MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0weon Unicode version

Theorem r0weon 7820
Description: A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
r0weon.1  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
Assertion
Ref Expression
r0weon  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
Distinct variable groups:    z, w, L    x, w, y, z
Allowed substitution hints:    R( x, y, z, w)    L( x, y)

Proof of Theorem r0weon
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 r0weon.1 . . . . 5  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
2 fveq2 5661 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
3 fveq2 5661 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( 2nd `  x )  =  ( 2nd `  z
) )
42, 3uneq12d 3438 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
5 eqid 2380 . . . . . . . . . . 11  |-  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) )  =  ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
6 fvex 5675 . . . . . . . . . . . 12  |-  ( 1st `  z )  e.  _V
7 fvex 5675 . . . . . . . . . . . 12  |-  ( 2nd `  z )  e.  _V
86, 7unex 4640 . . . . . . . . . . 11  |-  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  _V
94, 5, 8fvmpt 5738 . . . . . . . . . 10  |-  ( z  e.  ( On  X.  On )  ->  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
10 fveq2 5661 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( 1st `  x )  =  ( 1st `  w
) )
11 fveq2 5661 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( 2nd `  x )  =  ( 2nd `  w
) )
1210, 11uneq12d 3438 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
13 fvex 5675 . . . . . . . . . . . 12  |-  ( 1st `  w )  e.  _V
14 fvex 5675 . . . . . . . . . . . 12  |-  ( 2nd `  w )  e.  _V
1513, 14unex 4640 . . . . . . . . . . 11  |-  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  _V
1612, 5, 15fvmpt 5738 . . . . . . . . . 10  |-  ( w  e.  ( On  X.  On )  ->  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
179, 16breqan12d 4161 . . . . . . . . 9  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  _E  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  _E  (
( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
1815epelc 4430 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  _E  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
1917, 18syl6bb 253 . . . . . . . 8  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  _E  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
209, 16eqeqan12d 2395 . . . . . . . . 9  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  =  ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
2120anbi1d 686 . . . . . . . 8  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w )  <->  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) )
2219, 21orbi12d 691 . . . . . . 7  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) )  <->  ( (
( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
2322pm5.32i 619 . . . . . 6  |-  ( ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) ) )  <->  ( (
z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
2423opabbii 4206 . . . . 5  |-  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) ) ) }  =  { <. z ,  w >.  |  (
( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
251, 24eqtr4i 2403 . . . 4  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  w )  \/  (
( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  w )  /\  z L w ) ) ) }
26 xp1st 6308 . . . . . . . 8  |-  ( x  e.  ( On  X.  On )  ->  ( 1st `  x )  e.  On )
27 xp2nd 6309 . . . . . . . 8  |-  ( x  e.  ( On  X.  On )  ->  ( 2nd `  x )  e.  On )
28 fvex 5675 . . . . . . . . . 10  |-  ( 1st `  x )  e.  _V
2928elon 4524 . . . . . . . . 9  |-  ( ( 1st `  x )  e.  On  <->  Ord  ( 1st `  x ) )
30 fvex 5675 . . . . . . . . . 10  |-  ( 2nd `  x )  e.  _V
3130elon 4524 . . . . . . . . 9  |-  ( ( 2nd `  x )  e.  On  <->  Ord  ( 2nd `  x ) )
32 ordun 4616 . . . . . . . . 9  |-  ( ( Ord  ( 1st `  x
)  /\  Ord  ( 2nd `  x ) )  ->  Ord  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
3329, 31, 32syl2anb 466 . . . . . . . 8  |-  ( ( ( 1st `  x
)  e.  On  /\  ( 2nd `  x )  e.  On )  ->  Ord  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
3426, 27, 33syl2anc 643 . . . . . . 7  |-  ( x  e.  ( On  X.  On )  ->  Ord  (
( 1st `  x
)  u.  ( 2nd `  x ) ) )
3528, 30unex 4640 . . . . . . . 8  |-  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  _V
3635elon 4524 . . . . . . 7  |-  ( ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  On  <->  Ord  ( ( 1st `  x )  u.  ( 2nd `  x ) ) )
3734, 36sylibr 204 . . . . . 6  |-  ( x  e.  ( On  X.  On )  ->  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  On )
385, 37fmpti 5824 . . . . 5  |-  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) : ( On  X.  On )
--> On
3938a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) : ( On  X.  On ) --> On )
40 epweon 4697 . . . . 5  |-  _E  We  On
4140a1i 11 . . . 4  |-  (  T. 
->  _E  We  On )
42 leweon.1 . . . . . 6  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
4342leweon 7819 . . . . 5  |-  L  We  ( On  X.  On )
4443a1i 11 . . . 4  |-  (  T. 
->  L  We  ( On  X.  On ) )
45 vex 2895 . . . . . . . 8  |-  u  e. 
_V
4645dmex 5065 . . . . . . 7  |-  dom  u  e.  _V
4745rnex 5066 . . . . . . 7  |-  ran  u  e.  _V
4846, 47unex 4640 . . . . . 6  |-  ( dom  u  u.  ran  u
)  e.  _V
49 imadmres 5295 . . . . . . 7  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " u )
50 inss2 3498 . . . . . . . . . 10  |-  ( u  i^i  ( On  X.  On ) )  C_  ( On  X.  On )
51 ssun1 3446 . . . . . . . . . . . . . 14  |-  dom  u  C_  ( dom  u  u. 
ran  u )
5250sseli 3280 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  e.  ( On  X.  On ) )
53 1st2nd2 6318 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( On  X.  On )  ->  x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >. )
5452, 53syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
55 inss1 3497 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  ( On  X.  On ) )  C_  u
5655sseli 3280 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  e.  u )
5754, 56eqeltrrd 2455 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  u )
5828, 30opeldm 5006 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  u  ->  ( 1st `  x
)  e.  dom  u
)
5957, 58syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e. 
dom  u )
6051, 59sseldi 3282 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e.  ( dom  u  u. 
ran  u ) )
61 ssun2 3447 . . . . . . . . . . . . . 14  |-  ran  u  C_  ( dom  u  u. 
ran  u )
6228, 30opelrn 5034 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  u  ->  ( 2nd `  x
)  e.  ran  u
)
6357, 62syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e. 
ran  u )
6461, 63sseldi 3282 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e.  ( dom  u  u. 
ran  u ) )
65 prssi 3890 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  e.  ( dom  u  u.  ran  u
)  /\  ( 2nd `  x )  e.  ( dom  u  u.  ran  u ) )  ->  { ( 1st `  x
) ,  ( 2nd `  x ) }  C_  ( dom  u  u.  ran  u ) )
6660, 64, 65syl2anc 643 . . . . . . . . . . . 12  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  { ( 1st `  x ) ,  ( 2nd `  x
) }  C_  ( dom  u  u.  ran  u
) )
6752, 26syl 16 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e.  On )
6852, 27syl 16 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e.  On )
69 ordunpr 4739 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  e.  On  /\  ( 2nd `  x )  e.  On )  -> 
( ( 1st `  x
)  u.  ( 2nd `  x ) )  e. 
{ ( 1st `  x
) ,  ( 2nd `  x ) } )
7067, 68, 69syl2anc 643 . . . . . . . . . . . 12  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  e. 
{ ( 1st `  x
) ,  ( 2nd `  x ) } )
7166, 70sseldd 3285 . . . . . . . . . . 11  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u ) )
7271rgen 2707 . . . . . . . . . 10  |-  A. x  e.  ( u  i^i  ( On  X.  On ) ) ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u )
73 ssrab 3357 . . . . . . . . . 10  |-  ( ( u  i^i  ( On 
X.  On ) ) 
C_  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }  <->  ( (
u  i^i  ( On  X.  On ) )  C_  ( On  X.  On )  /\  A. x  e.  ( u  i^i  ( On  X.  On ) ) ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u ) ) )
7450, 72, 73mpbir2an 887 . . . . . . . . 9  |-  ( u  i^i  ( On  X.  On ) )  C_  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }
75 dmres 5100 . . . . . . . . . 10  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  =  ( u  i^i  dom  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )
7638fdmi 5529 . . . . . . . . . . 11  |-  dom  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  =  ( On  X.  On )
7776ineq2i 3475 . . . . . . . . . 10  |-  ( u  i^i  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) )  =  ( u  i^i  ( On 
X.  On ) )
7875, 77eqtri 2400 . . . . . . . . 9  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  =  ( u  i^i  ( On 
X.  On ) )
795mptpreima 5296 . . . . . . . . 9  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" ( dom  u  u.  ran  u ) )  =  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }
8074, 78, 793sstr4i 3323 . . . . . . . 8  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) )
81 funmpt 5422 . . . . . . . . 9  |-  Fun  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
82 resss 5103 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
83 dmss 5002 . . . . . . . . . 10  |-  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  ->  dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )
8482, 83ax-mp 8 . . . . . . . . 9  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
85 funimass3 5778 . . . . . . . . 9  |-  ( ( Fun  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) )  /\  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )  ->  ( (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )  <->  dom  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) ) ) )
8681, 84, 85mp2an 654 . . . . . . . 8  |-  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )  <->  dom  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) ) )
8780, 86mpbir 201 . . . . . . 7  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )
8849, 87eqsstr3i 3315 . . . . . 6  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  C_  ( dom  u  u.  ran  u )
8948, 88ssexi 4282 . . . . 5  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  e. 
_V
9089a1i 11 . . . 4  |-  (  T. 
->  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " u )  e.  _V )
9125, 39, 41, 44, 90fnwe 6391 . . 3  |-  (  T. 
->  R  We  ( On  X.  On ) )
92 epse 4499 . . . . 5  |-  _E Se  On
9392a1i 11 . . . 4  |-  (  T. 
->  _E Se  On )
9445uniex 4638 . . . . . . . 8  |-  U. u  e.  _V
9594pwex 4316 . . . . . . 7  |-  ~P U. u  e.  _V
9695, 95xpex 4923 . . . . . 6  |-  ( ~P
U. u  X.  ~P U. u )  e.  _V
975mptpreima 5296 . . . . . . . 8  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  =  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u }
98 df-rab 2651 . . . . . . . 8  |-  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  u }  =  { x  |  ( x  e.  ( On  X.  On )  /\  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u ) }
9997, 98eqtri 2400 . . . . . . 7  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  =  { x  |  ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u ) }
10053adantr 452 . . . . . . . . 9  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
101 elssuni 3978 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u  ->  ( ( 1st `  x )  u.  ( 2nd `  x
) )  C_  U. u
)
102101adantl 453 . . . . . . . . . . . 12  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  C_  U. u )
103102unssad 3460 . . . . . . . . . . 11  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 1st `  x )  C_  U. u )
10428elpw 3741 . . . . . . . . . . 11  |-  ( ( 1st `  x )  e.  ~P U. u  <->  ( 1st `  x ) 
C_  U. u )
105103, 104sylibr 204 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 1st `  x )  e. 
~P U. u )
106102unssbd 3461 . . . . . . . . . . 11  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 2nd `  x )  C_  U. u )
10730elpw 3741 . . . . . . . . . . 11  |-  ( ( 2nd `  x )  e.  ~P U. u  <->  ( 2nd `  x ) 
C_  U. u )
108106, 107sylibr 204 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 2nd `  x )  e. 
~P U. u )
109105, 108jca 519 . . . . . . . . 9  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  (
( 1st `  x
)  e.  ~P U. u  /\  ( 2nd `  x
)  e.  ~P U. u ) )
110 elxp6 6310 . . . . . . . . 9  |-  ( x  e.  ( ~P U. u  X.  ~P U. u
)  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ~P U. u  /\  ( 2nd `  x
)  e.  ~P U. u ) ) )
111100, 109, 110sylanbrc 646 . . . . . . . 8  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  x  e.  ( ~P U. u  X.  ~P U. u ) )
112111abssi 3354 . . . . . . 7  |-  { x  |  ( x  e.  ( On  X.  On )  /\  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u ) } 
C_  ( ~P U. u  X.  ~P U. u
)
11399, 112eqsstri 3314 . . . . . 6  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  C_  ( ~P U. u  X.  ~P U. u )
11496, 113ssexi 4282 . . . . 5  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  e. 
_V
115114a1i 11 . . . 4  |-  (  T. 
->  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) "
u )  e.  _V )
11625, 39, 93, 115fnse 6392 . . 3  |-  (  T. 
->  R Se  ( On  X.  On ) )
11791, 116jca 519 . 2  |-  (  T. 
->  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) ) )
118117trud 1329 1  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1717   {cab 2366   A.wral 2642   {crab 2646   _Vcvv 2892    u. cun 3254    i^i cin 3255    C_ wss 3256   ~Pcpw 3735   {cpr 3751   <.cop 3753   U.cuni 3950   class class class wbr 4146   {copab 4199    e. cmpt 4200    _E cep 4426   Se wse 4473    We wwe 4474   Ord word 4514   Oncon0 4515    X. cxp 4809   `'ccnv 4810   dom cdm 4811   ran crn 4812    |` cres 4813   "cima 4814   Fun wfun 5381   -->wf 5383   ` cfv 5387   1stc1st 6279   2ndc2nd 6280
This theorem is referenced by:  infxpenlem  7821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-1st 6281  df-2nd 6282
  Copyright terms: Public domain W3C validator