MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0weon Unicode version

Theorem r0weon 7850
Description: A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
r0weon.1  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
Assertion
Ref Expression
r0weon  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
Distinct variable groups:    z, w, L    x, w, y, z
Allowed substitution hints:    R( x, y, z, w)    L( x, y)

Proof of Theorem r0weon
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 r0weon.1 . . . . 5  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
2 fveq2 5687 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
3 fveq2 5687 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( 2nd `  x )  =  ( 2nd `  z
) )
42, 3uneq12d 3462 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
5 eqid 2404 . . . . . . . . . . 11  |-  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) )  =  ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
6 fvex 5701 . . . . . . . . . . . 12  |-  ( 1st `  z )  e.  _V
7 fvex 5701 . . . . . . . . . . . 12  |-  ( 2nd `  z )  e.  _V
86, 7unex 4666 . . . . . . . . . . 11  |-  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  _V
94, 5, 8fvmpt 5765 . . . . . . . . . 10  |-  ( z  e.  ( On  X.  On )  ->  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
10 fveq2 5687 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( 1st `  x )  =  ( 1st `  w
) )
11 fveq2 5687 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( 2nd `  x )  =  ( 2nd `  w
) )
1210, 11uneq12d 3462 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
13 fvex 5701 . . . . . . . . . . . 12  |-  ( 1st `  w )  e.  _V
14 fvex 5701 . . . . . . . . . . . 12  |-  ( 2nd `  w )  e.  _V
1513, 14unex 4666 . . . . . . . . . . 11  |-  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  _V
1612, 5, 15fvmpt 5765 . . . . . . . . . 10  |-  ( w  e.  ( On  X.  On )  ->  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
179, 16breqan12d 4187 . . . . . . . . 9  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  _E  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  _E  (
( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
1815epelc 4456 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  _E  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
1917, 18syl6bb 253 . . . . . . . 8  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  _E  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
209, 16eqeqan12d 2419 . . . . . . . . 9  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  z )  =  ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 w )  <->  ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
2120anbi1d 686 . . . . . . . 8  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w )  <->  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) )
2219, 21orbi12d 691 . . . . . . 7  |-  ( ( z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  -> 
( ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) )  <->  ( (
( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
2322pm5.32i 619 . . . . . 6  |-  ( ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) ) )  <->  ( (
z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
2423opabbii 4232 . . . . 5  |-  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  \/  ( ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) `
 z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  w )  /\  z L w ) ) ) }  =  { <. z ,  w >.  |  (
( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
251, 24eqtr4i 2427 . . . 4  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  z )  _E  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  w )  \/  (
( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) `  z )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) `  w )  /\  z L w ) ) ) }
26 xp1st 6335 . . . . . . . 8  |-  ( x  e.  ( On  X.  On )  ->  ( 1st `  x )  e.  On )
27 xp2nd 6336 . . . . . . . 8  |-  ( x  e.  ( On  X.  On )  ->  ( 2nd `  x )  e.  On )
28 fvex 5701 . . . . . . . . . 10  |-  ( 1st `  x )  e.  _V
2928elon 4550 . . . . . . . . 9  |-  ( ( 1st `  x )  e.  On  <->  Ord  ( 1st `  x ) )
30 fvex 5701 . . . . . . . . . 10  |-  ( 2nd `  x )  e.  _V
3130elon 4550 . . . . . . . . 9  |-  ( ( 2nd `  x )  e.  On  <->  Ord  ( 2nd `  x ) )
32 ordun 4642 . . . . . . . . 9  |-  ( ( Ord  ( 1st `  x
)  /\  Ord  ( 2nd `  x ) )  ->  Ord  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
3329, 31, 32syl2anb 466 . . . . . . . 8  |-  ( ( ( 1st `  x
)  e.  On  /\  ( 2nd `  x )  e.  On )  ->  Ord  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
3426, 27, 33syl2anc 643 . . . . . . 7  |-  ( x  e.  ( On  X.  On )  ->  Ord  (
( 1st `  x
)  u.  ( 2nd `  x ) ) )
3528, 30unex 4666 . . . . . . . 8  |-  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  _V
3635elon 4550 . . . . . . 7  |-  ( ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  On  <->  Ord  ( ( 1st `  x )  u.  ( 2nd `  x ) ) )
3734, 36sylibr 204 . . . . . 6  |-  ( x  e.  ( On  X.  On )  ->  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  On )
385, 37fmpti 5851 . . . . 5  |-  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) : ( On  X.  On )
--> On
3938a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) : ( On  X.  On ) --> On )
40 epweon 4723 . . . . 5  |-  _E  We  On
4140a1i 11 . . . 4  |-  (  T. 
->  _E  We  On )
42 leweon.1 . . . . . 6  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
4342leweon 7849 . . . . 5  |-  L  We  ( On  X.  On )
4443a1i 11 . . . 4  |-  (  T. 
->  L  We  ( On  X.  On ) )
45 vex 2919 . . . . . . . 8  |-  u  e. 
_V
4645dmex 5091 . . . . . . 7  |-  dom  u  e.  _V
4745rnex 5092 . . . . . . 7  |-  ran  u  e.  _V
4846, 47unex 4666 . . . . . 6  |-  ( dom  u  u.  ran  u
)  e.  _V
49 imadmres 5321 . . . . . . 7  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  =  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " u )
50 inss2 3522 . . . . . . . . . 10  |-  ( u  i^i  ( On  X.  On ) )  C_  ( On  X.  On )
51 ssun1 3470 . . . . . . . . . . . . . 14  |-  dom  u  C_  ( dom  u  u. 
ran  u )
5250sseli 3304 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  e.  ( On  X.  On ) )
53 1st2nd2 6345 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( On  X.  On )  ->  x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >. )
5452, 53syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
55 inss1 3521 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  ( On  X.  On ) )  C_  u
5655sseli 3304 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  x  e.  u )
5754, 56eqeltrrd 2479 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  u )
5828, 30opeldm 5032 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  u  ->  ( 1st `  x
)  e.  dom  u
)
5957, 58syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e. 
dom  u )
6051, 59sseldi 3306 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e.  ( dom  u  u. 
ran  u ) )
61 ssun2 3471 . . . . . . . . . . . . . 14  |-  ran  u  C_  ( dom  u  u. 
ran  u )
6228, 30opelrn 5060 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  u  ->  ( 2nd `  x
)  e.  ran  u
)
6357, 62syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e. 
ran  u )
6461, 63sseldi 3306 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e.  ( dom  u  u. 
ran  u ) )
65 prssi 3914 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  e.  ( dom  u  u.  ran  u
)  /\  ( 2nd `  x )  e.  ( dom  u  u.  ran  u ) )  ->  { ( 1st `  x
) ,  ( 2nd `  x ) }  C_  ( dom  u  u.  ran  u ) )
6660, 64, 65syl2anc 643 . . . . . . . . . . . 12  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  { ( 1st `  x ) ,  ( 2nd `  x
) }  C_  ( dom  u  u.  ran  u
) )
6752, 26syl 16 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 1st `  x )  e.  On )
6852, 27syl 16 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  ( 2nd `  x )  e.  On )
69 ordunpr 4765 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  e.  On  /\  ( 2nd `  x )  e.  On )  -> 
( ( 1st `  x
)  u.  ( 2nd `  x ) )  e. 
{ ( 1st `  x
) ,  ( 2nd `  x ) } )
7067, 68, 69syl2anc 643 . . . . . . . . . . . 12  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  e. 
{ ( 1st `  x
) ,  ( 2nd `  x ) } )
7166, 70sseldd 3309 . . . . . . . . . . 11  |-  ( x  e.  ( u  i^i  ( On  X.  On ) )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u ) )
7271rgen 2731 . . . . . . . . . 10  |-  A. x  e.  ( u  i^i  ( On  X.  On ) ) ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u )
73 ssrab 3381 . . . . . . . . . 10  |-  ( ( u  i^i  ( On 
X.  On ) ) 
C_  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }  <->  ( (
u  i^i  ( On  X.  On ) )  C_  ( On  X.  On )  /\  A. x  e.  ( u  i^i  ( On  X.  On ) ) ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  ( dom  u  u. 
ran  u ) ) )
7450, 72, 73mpbir2an 887 . . . . . . . . 9  |-  ( u  i^i  ( On  X.  On ) )  C_  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }
75 dmres 5126 . . . . . . . . . 10  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  =  ( u  i^i  dom  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )
7638fdmi 5555 . . . . . . . . . . 11  |-  dom  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  =  ( On  X.  On )
7776ineq2i 3499 . . . . . . . . . 10  |-  ( u  i^i  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) )  =  ( u  i^i  ( On 
X.  On ) )
7875, 77eqtri 2424 . . . . . . . . 9  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  =  ( u  i^i  ( On 
X.  On ) )
795mptpreima 5322 . . . . . . . . 9  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" ( dom  u  u.  ran  u ) )  =  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  ( dom  u  u.  ran  u ) }
8074, 78, 793sstr4i 3347 . . . . . . . 8  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) )
81 funmpt 5448 . . . . . . . . 9  |-  Fun  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
82 resss 5129 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
83 dmss 5028 . . . . . . . . . 10  |-  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  ->  dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )
8482, 83ax-mp 8 . . . . . . . . 9  |-  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
85 funimass3 5805 . . . . . . . . 9  |-  ( ( Fun  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) )  /\  dom  (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  dom  ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) ) )  ->  ( (
( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )  <->  dom  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) ) ) )
8681, 84, 85mp2an 654 . . . . . . . 8  |-  ( ( ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )  <->  dom  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u )  C_  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " ( dom  u  u.  ran  u
) ) )
8780, 86mpbir 201 . . . . . . 7  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" dom  ( (
x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )  |`  u ) )  C_  ( dom  u  u.  ran  u )
8849, 87eqsstr3i 3339 . . . . . 6  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  C_  ( dom  u  u.  ran  u )
8948, 88ssexi 4308 . . . . 5  |-  ( ( x  e.  ( On 
X.  On )  |->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  e. 
_V
9089a1i 11 . . . 4  |-  (  T. 
->  ( ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x ) ) ) " u )  e.  _V )
9125, 39, 41, 44, 90fnwe 6421 . . 3  |-  (  T. 
->  R  We  ( On  X.  On ) )
92 epse 4525 . . . . 5  |-  _E Se  On
9392a1i 11 . . . 4  |-  (  T. 
->  _E Se  On )
9445uniex 4664 . . . . . . . 8  |-  U. u  e.  _V
9594pwex 4342 . . . . . . 7  |-  ~P U. u  e.  _V
9695, 95xpex 4949 . . . . . 6  |-  ( ~P
U. u  X.  ~P U. u )  e.  _V
975mptpreima 5322 . . . . . . . 8  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  =  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u }
98 df-rab 2675 . . . . . . . 8  |-  { x  e.  ( On  X.  On )  |  ( ( 1st `  x )  u.  ( 2nd `  x
) )  e.  u }  =  { x  |  ( x  e.  ( On  X.  On )  /\  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u ) }
9997, 98eqtri 2424 . . . . . . 7  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  =  { x  |  ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u ) }
10053adantr 452 . . . . . . . . 9  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
101 elssuni 4003 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u  ->  ( ( 1st `  x )  u.  ( 2nd `  x
) )  C_  U. u
)
102101adantl 453 . . . . . . . . . . . 12  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  (
( 1st `  x
)  u.  ( 2nd `  x ) )  C_  U. u )
103102unssad 3484 . . . . . . . . . . 11  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 1st `  x )  C_  U. u )
10428elpw 3765 . . . . . . . . . . 11  |-  ( ( 1st `  x )  e.  ~P U. u  <->  ( 1st `  x ) 
C_  U. u )
105103, 104sylibr 204 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 1st `  x )  e. 
~P U. u )
106102unssbd 3485 . . . . . . . . . . 11  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 2nd `  x )  C_  U. u )
10730elpw 3765 . . . . . . . . . . 11  |-  ( ( 2nd `  x )  e.  ~P U. u  <->  ( 2nd `  x ) 
C_  U. u )
108106, 107sylibr 204 . . . . . . . . . 10  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  ( 2nd `  x )  e. 
~P U. u )
109105, 108jca 519 . . . . . . . . 9  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  (
( 1st `  x
)  e.  ~P U. u  /\  ( 2nd `  x
)  e.  ~P U. u ) )
110 elxp6 6337 . . . . . . . . 9  |-  ( x  e.  ( ~P U. u  X.  ~P U. u
)  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ~P U. u  /\  ( 2nd `  x
)  e.  ~P U. u ) ) )
111100, 109, 110sylanbrc 646 . . . . . . . 8  |-  ( ( x  e.  ( On 
X.  On )  /\  ( ( 1st `  x
)  u.  ( 2nd `  x ) )  e.  u )  ->  x  e.  ( ~P U. u  X.  ~P U. u ) )
112111abssi 3378 . . . . . . 7  |-  { x  |  ( x  e.  ( On  X.  On )  /\  ( ( 1st `  x )  u.  ( 2nd `  x ) )  e.  u ) } 
C_  ( ~P U. u  X.  ~P U. u
)
11399, 112eqsstri 3338 . . . . . 6  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  C_  ( ~P U. u  X.  ~P U. u )
11496, 113ssexi 4308 . . . . 5  |-  ( `' ( x  e.  ( On  X.  On ) 
|->  ( ( 1st `  x
)  u.  ( 2nd `  x ) ) )
" u )  e. 
_V
115114a1i 11 . . . 4  |-  (  T. 
->  ( `' ( x  e.  ( On  X.  On )  |->  ( ( 1st `  x )  u.  ( 2nd `  x
) ) ) "
u )  e.  _V )
11625, 39, 93, 115fnse 6422 . . 3  |-  (  T. 
->  R Se  ( On  X.  On ) )
11791, 116jca 519 . 2  |-  (  T. 
->  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) ) )
118117trud 1329 1  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   {crab 2670   _Vcvv 2916    u. cun 3278    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   {cpr 3775   <.cop 3777   U.cuni 3975   class class class wbr 4172   {copab 4225    e. cmpt 4226    _E cep 4452   Se wse 4499    We wwe 4500   Ord word 4540   Oncon0 4541    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840   Fun wfun 5407   -->wf 5409   ` cfv 5413   1stc1st 6306   2ndc2nd 6307
This theorem is referenced by:  infxpenlem  7851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-1st 6308  df-2nd 6309
  Copyright terms: Public domain W3C validator