MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.21be Unicode version

Theorem r19.21be 2619
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
Hypothesis
Ref Expression
r19.21be.1  |-  ( ph  ->  A. x  e.  A  ps )
Assertion
Ref Expression
r19.21be  |-  A. x  e.  A  ( ph  ->  ps )

Proof of Theorem r19.21be
StepHypRef Expression
1 r19.21be.1 . . . 4  |-  ( ph  ->  A. x  e.  A  ps )
21r19.21bi 2616 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ps )
32expcom 426 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
43rgen 2583 1  |-  A. x  e.  A  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1621   A.wral 2518
This theorem is referenced by:  bnj580  27994
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1536  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ral 2523
  Copyright terms: Public domain W3C validator